The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

- Coloured covers/
- Covers damaged/
- Covers restored and/or laminated/
- Cover title missing/
- Coloured maps/
- Coloured ink (i.e. other than blue or black)/
- Coloured plates and/or illustrations/
- Bound with other material/
- Tight binding may cause shadows or distortion along interior margin/
- Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
- Additional comments:

This item is filmed at the reduction ratio checked below:

<table>
<thead>
<tr>
<th>Reduction Ratio</th>
<th>10X</th>
<th>14X</th>
<th>18X</th>
<th>22X</th>
<th>26X</th>
<th>30X</th>
<th>12X</th>
<th>16X</th>
<th>20X</th>
<th>24X</th>
<th>28X</th>
<th>32X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checked</td>
<td></td>
</tr>
</tbody>
</table>
The copy filmed here has been reproduced thanks to the generosity of:

Library of Congress
Photoduplication Service

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol — (meaning "CONTINUED"), or the symbol \(\triangleright \) (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

```
   1   2   3
```

```
   1

   2

   3
```

```
   1   2   3

   4   5   6
```

L'exemplaire filmé fut reproduit grâce à la générosité de:

Library of Congress
Photoduplication Service

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \(\longrightarrow \) signifie "A SUIVRE", le symbole \(\triangleright \) signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.
THE BOTANY
OF THE
EASTERN COAST OF LAKE HURON.

BY JOHN GIBSON, B.A., F.G.S., F.R.S.E., AND JOHN MACOUN, M.A.,
Professors in Albert College and University, Belleville.
THE BOTANY OF THE EASTERN COAST OF LAKE HURON.

BY JOHN GIBSON, B.A., F.G.S., F.R.S.E., AND JOHN MACOUN, M.A.,
Professor in Albert College and University, Belleville.

During the months July and August of the past summer, the writers, in company with James Burns, Esq., of Bayfield, made a somewhat satisfactory, though necessarily incomplete exploration of the Botany and Geology of that portion of the eastern coast of Lake Huron lying between the parallels 43° 10' and 44° 50' N. lat. The eastern and western extension of this area embraces only that portion of Western Ontario which is bounded on the west by Lake Huron, and on the east by an imaginary line drawn from the southern bend of the Rivière aux Sables (south), in a direction N. by N. E., to the mouth of the Sydenham River at Owen Sound on the Georgian Bay. The superficial area, therefore, is by no means extensive, but owing to its northern and southern bearing, and its favoured conditions of climate, cannot fail in a botanical point of view to be productive of many interesting facts in the geographical botany of Canada. In treating of the botany of a district so limited in extent as the one under review, it must be borne in mind that, making due allowance for the varying altitude of the country, we cannot with any degree of precision come to any generalizations regarding the effect of so limited an increase of latitude upon the vegetation of that particular meridian. We can point, however, to the existence, within this area, of forms whose presence can only be accounted for through a peculiarity of causes, geological and climatic; and on this account it is deemed expedient to preface our botanical notes with a sketch of the more salient points in the physical geology and climatology of the district.

From Cape Ippewash on the south to the Georgian Bay on the north, the general character of the region is level or gently undulating, presenting no conspicuous highlands with the exception of the bold precipitous escarpments found skirting the southern and southwestern coasts of the Georgian Bay. Along the coast of Lake Huron
from Port Frank to Clark Point the coast is bold but not precipitous, has an average height of 100 feet above the Lake, and is composed of the brown calcareous clays of the Saugeen division, sometimes visibly underlaid by members of the Corniferous and Tentaculite Formations. Westward from the Lake the country keeps perceptibly rising, and culminates in a ridge, running between the Townships of Tuckersmith and Hibbert 'n County Huron, which rises to the summit-level of 1,050 feet above the sea. The average altitude above Lake Huron is about 222 feet, and above the sea approximately, 990. The superficial deposits of the drift period form the surface of this triangular area, and so vast and universal are these accumulations that access to the foundation rocks can only be made along some of the river channels, and at intervals along the margin of the Lake. These deposits have as yet been but imperfectly studied, but the principal facts of their history, so far as is necessary in the present connection, will be given as briefly as possible. They may be sub-divided in ascending order, into:

1. Erie blue clay.
2. Saugeen brown clay.
3. Local deposits of reddish clay, gravel and sand.

The lowest of these stratified sediments is the Erie clay. It is more or less calcareous, containing in many instances 30 per cent. of calcium carbonate, and holds numerous pebbles and boulders alike of Paleozoic, Huronian and Laurentian origin. The second division, or that of the Saugeen clay is, along with beds of modified drift, the superficial deposit of the district, and thus demands some consideration in a botanical point of view. It is an aggregate of very fine layers of brown calcareous clay, containing but few embedded boulders or pebbles. Its average thickness seems to be about 100 feet, although in a few instances in north Huron, and along the banks of the Saugeen River, between Hanover and Walkerton, it is found as a very thin bed, overlying a deposit of fine brown sand, into which at different points the clay is pressed in the form of mammillar masses of various sizes. A great portion, however, of this upper deposit of clay is overlaid by beds of coarse gravel and sand, observed capping the ridges of hills which run in a general east and west direction to the vicinity of the Lake. Crossing these ranges of hills almost at right angles, and extending along the western limit of the district, lies a remarkable ridge composed of water-worn gravel and fine sand, whose
general contour is parallel to the present margin of the lake. Conforming to the irregularities of the coast for about sixty miles, and at an average distance from it of a mile and a half, it reaches on the south the sandy flats of the Rivière aux Sables (south), and is finally lost. The western slope of this lacustrine terrace inclines gradually towards the present lake beach, and within this limited area deposits of shell-marl are frequently found. Future researches will, no doubt, prove the existence of other terraces lying more to the eastward, which will, doubtless, throw much light on the former physical features of this lake area. Hydrographically, the region under consideration may be divided into two, more or less, distinct areas, the one comprising the valleys of the Rivière aux Sables (north and south), the Bayfield, Maitland, and Saugeen Rivers which flow into Lake Huron; the other comprising the bight of Owen Sound, fed by the Rivers Potawatomi, Sydenham, and Indian, and the Bays Colpoy and Hope. These streams, as a rule, are small, and undergo rapid oscillations of level, increasing in the spring to torrents of considerable volume, and conspicuously diminishing towards the fall, when, in many cases, numerous small deltas are formed in the lowlands, composed for the most part of thin alluvial accumulations.

The hydrographic areas thus indicated are naturally separated by the somewhat tortuous escarpment of the Niagara limestone, which, entering this district from the south, sweeps around towards the heights above Cape Commissore, and thence trending northward past Cape Paillet, finally terminates at Cabot's Head, the extreme northern point of the Bruce Peninsula. Throughout its course it conforms with more or less irregularity to the shape of the coast line, but presenting a less salient curve, and in every case exposing its precipitous face to the north and north-east, in cliffs ranging from 50 to 300 feet above the level of Lake Huron. The Clinton limestones, however, are found to visibly underlie the Niagara in the more southern bluffs, occupying in many instances a vertical face from 70 to 100 feet in height. North of Cape Paillet these limestones disappear, and the cliffs along the coast to Cape Chin are altogether occupied by the Niagara escarpment, and vary in height from 120 to 190 feet.

Important as is this escarpment from a geological standpoint, it is found to be no less effective as a meteorological agent, in its relation to the vegetation of this portion of Ontario. The immediate coast along the southern and south-western portions of the Georgian Bay...
is naturally exposed much more effectually to the boreal winds from
the Muskoka territory than is the district lying along the eastern
shore of Lake Huron. These cold winds act as refrigerators on the
vaporous atmosphere of the Georgian Bay, and are therefore produc-
tive of a supply of snow much more abundant than that found along
the immediate coast of Lake Huron. The soil, therefore, undisturbed
by the varying temperature which affects other districts further south,
seldom freezes to any great extent, and consequently must exert a
marked influence upon the vegetation of early spring. Such indeed is
found to be the case. The snow remains till late, and when it finally
disappears, vegetation bursts out with astonishing rapidity and vigour.
Doubtless similar physical causes render the vegetation of the Mus-
koka district equally precocious and exuberant; so that here on the
45th parallel of latitude, and before the end of May, may be seen
peas, beans and potatoes several inches above the ground. To some
what different climatological influences, however, is that region ex-
posed which borders on the coast of Lake Huron. Here likewise,
the prevailing winds are from the north and north-west, but these
are materially modified in temperature in their passage over such a
body of water. Lake Huron, with its area of 23,780 square miles,
cannot but dispense a degree of moisture to its shores not to be
found in more inland localities, and must consequently exercise an
equalizing effect upon the summer and winter temperatures of the
atmosphere near the coast-line. Here, however, we find no protect-
ing rock-escarpments so congenial to the more northern vegetation of
the Georgian Bay, but a continuous cliff-line of brown clay raised on
an average 100 feet above the lake. While, therefore, in the former
area are found on the one hand introduced forms which survive the
inclamency of winter under its heavy carpeting of snow, and on the
other, herbaceous vegetation delighting in boreal winds and the moist
cool crevices of rocks;—in the latter grow arborescent types, the
vitality of whose fruit-bud could only be preserved by an equable
and moist atmosphere, and the majority of which are decidedly
southern in range. As corroborative of this conclusion may be cited
the fact that in the neighbourhood of our great lakes the isothermal
lines trend southward, the curve being considerably more acute on
the eastern than on the western shores. In this connection it may
be observed that the following introduced trees and shrubs grow and
flourish most luxuriantly at Royston Park, Owen Sound:
It is somewhat remarkable that the majority of all the shrubs in cultivation, either in Toronto or St. Catharines, can here be brought to perfection without any artificial protection whatever, but that on the exposed coast-line of Lake Huron such forms cannot be openly cultivated, the snow supply not being sufficient, nor its continuance constant enough, to afford the necessary protection.

Before leaving this portion of our subject it may not be uninteresting to indicate certain preferences among the plants of this area for the Niagara and Clinton limestones, a fact which at once suggests an explanation of the many anomalies in the botanical geography of the district. The Ferns, Scopendrium officinarum, Pelata atropurpurae, Aspidium felix-mas, and A. lonchitis, may more especially be cited as peculiar, so far as investigation goes, to the Niagara and Clinton Formations of Canada. Of these, Scopendrium officinarum has been reported from only two localities in North America, the one at Onondaga in New York State, the other in the vicinity of Owen Sound, Ontario. Pelata atropurpurae has been detected at different stations along the Niagara escarpment, from the Falls to Owen Sound and Colpo's Bay; and Aspidium lonchitis seems to be confined to the Niagara escarpment of the Bruce Peninsula. Among the mosses, however, we discover a more marked predilection for the Niagara and Clinton rocks of Canada. The following brief catalogue in all probability includes the principal forms under this relationship:

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anodis Dorianus</td>
<td>Bartramia calcarea</td>
</tr>
<tr>
<td>Seligera recurvata</td>
<td>Dryopteris odorata</td>
</tr>
<tr>
<td>S. pulila</td>
<td>D. intermedia</td>
</tr>
<tr>
<td>Gymnostomum curvirostrum.</td>
<td>Gymnogramma crenulata</td>
</tr>
<tr>
<td>G. rupestre</td>
<td>Hypnum cupreum</td>
</tr>
<tr>
<td>Hypnum Salvinii</td>
<td>Hypnum arbusculum</td>
</tr>
<tr>
<td>H. brevifolium</td>
<td>H. browneri</td>
</tr>
<tr>
<td>H. Somerfeltii</td>
<td>H. uliginosum</td>
</tr>
<tr>
<td>H. chrysophyllum, var. ruprecht.</td>
<td>H. hirsutum</td>
</tr>
<tr>
<td>H. compactum</td>
<td>H. pulchrum</td>
</tr>
<tr>
<td>H. deplanatum</td>
<td>H. neglectum</td>
</tr>
<tr>
<td>Bryum albeicans</td>
<td>Leptum bistortiforme</td>
</tr>
<tr>
<td>Leskea nervosa</td>
<td>Thamnophila strobilacea</td>
</tr>
<tr>
<td>Deutzia gracilis var. crenata.</td>
<td>Deutzia plumosa</td>
</tr>
<tr>
<td>Chionanthus virginicus</td>
<td>Chionanthus fruticosus</td>
</tr>
<tr>
<td>Rhus cotinosa</td>
<td>Rhus glabra</td>
</tr>
<tr>
<td>Viburnum odoratissimum</td>
<td>Viburnum dentatum</td>
</tr>
</tbody>
</table>

Anodis Dorianus grows on the limestones of the Niagara region, especially in the vicinity of the falls, and on the escarpment from Colpo's Bay to Owen Sound. Seligera recurvata is peculiar to the limestone rocks of the Niagara region, especially in the vicinity of the falls. S. pulila is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Gymnostomum curvirostrum is peculiar to the limestone rocks of the Niagara region, especially in the vicinity of the falls. G. rupestre is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Hypnum cupreum is peculiar to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Hypnum Salvinii is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. H. brevifolium is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. H. Somerfeltii is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. H. chrysophyllum, var. ruprecht is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. H. compactum is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. H. deplanatum is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Bryum albeicans is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Leskea nervosa is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Deutzia gracilis var. crenata is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Chionanthus virginicus is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Rhus cotinosa is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls. Viburnum odoratissimum is confined to the limestone rocks of the Niagara region, especially in the vicinity of the falls.
Of the above, Anodiscus Dorianus, Seligeria pusilla, Hypnum compactum, and Catoscepus nigrabilis, may more particularly be cited as decidedly peculiar to this geological formation; *A. Dorianus*, from the Indian River, Owen Sound, not having hitherto been met with in any other portion of North America.

Gymnostomum curvisetum and *Fissidens grandifrons* appear in great abundance alike at Owen Sound and the cliffs of the Niagara River, but are not reported from any other Canadian locality. Of the Liverworts apparently confined to this district and formation, may be mentioned more especially the *Jugurmanniopsis cordifolia*, the *Ricea soror*, and the *Hedwicciella papilla*. Other examples, moreover, of the influence exerted on distribution by the chemical nature of the habitat, could in this connection be cited, exemplifying even more characteristically a similar peculiarity of range.

Upon Laurentian soils and strata occur a number of species not elsewhere detected in Canada, so far as our present knowledge of their distribution extends. The more characteristic of these are given in the following list:

<table>
<thead>
<tr>
<th>Species</th>
<th>Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polygonum ciliatum</td>
<td>Aica flexuosa</td>
</tr>
<tr>
<td>Calaminia angustifolia</td>
<td>Teictum subpinatum</td>
</tr>
<tr>
<td>Lobelia dortmannii</td>
<td>Asplenium chenuum</td>
</tr>
<tr>
<td>Limnanthemum lasuosum</td>
<td>Woodia trivialis</td>
</tr>
<tr>
<td>Pinnus rigida</td>
<td>Aspidium fragrans</td>
</tr>
<tr>
<td>Potamogeton claytonii</td>
<td>Grimmia lanceolata</td>
</tr>
<tr>
<td>P. vavyl.</td>
<td>Racomitrium microrapum</td>
</tr>
<tr>
<td>P. sapphirinum</td>
<td>R. sulpicium</td>
</tr>
<tr>
<td>P. robindaii</td>
<td>R. canescens</td>
</tr>
<tr>
<td>P. rufescens</td>
<td>Hedwigia ciliata</td>
</tr>
<tr>
<td>Carex Houghtonii</td>
<td>Dicranum sparcum</td>
</tr>
<tr>
<td>C. leucodaria</td>
<td>Rhizodium fertilis</td>
</tr>
<tr>
<td>C. longireatris</td>
<td>Trihorstomum glaucensens</td>
</tr>
<tr>
<td>Lygodium inundatum</td>
<td>Fontinalis antipyretica, var. gigantea.</td>
</tr>
<tr>
<td>Hypnum rugosum</td>
<td>Jugurmannia barista</td>
</tr>
</tbody>
</table>

From the Rivière aux Sables on the south to the Niagara escarpment on the north, no rock exposures are met with of sufficient importance to exercise any appreciable effect upon the vegetation of the region. Along the valleys of the Saugeen, Maitland, and Bayfield Rivers, and upon the intervening gravel ridges, we find, with a few exceptions, the usual woodland types of more or less general
distribution throughout the Province. Further south, however, along the valley of the Rivière aux Sables, exist what are called the sandy plains of Bosanquet, composed of a white shifting sand, which, towards the coast, has been thrown up by the action of the wind into parallel dunes, rising in some instances to the height of 140 feet above the level of the plain, and resembling ordinary ridges of hill, formed by the usual process of denudation. Southward from the Aux Sables the steep clay terraces, which to the northward are observed overlooking the lake, keep gradually receding from the coast-line, until within the vicinity of Sarnia, on the St. Clair, where the clay again makes its appearance, and continues thence southward to Lake Erie. The area between this ancient lake-margin and the present beach is everywhere covered by drifting sands, similar to those of the Bosanquet plains of the Aux Sables. A sand area of a somewhat analogous nature is traceable northward from Clark Point to the mouth of the Saugeen River, a distance of about 33 miles, and is found to occupy another portion of the former eastward extension of the waters of Lake Huron.

No portion of this district, however desert in repute and in fact, is destitute of a certain amount of vegetation. The ceaseless motion of the sand precludes the possibility of a grassy, green sward, and favours only a scattered growth of perennials, springing from thick and usually deep-seated roots or root-stocks, which, under the partial protection afforded by the scrubby growth of the oak and pine, are able to maintain a sturdy growth till comparatively late in the season. The more generally predominant species are here enumerated:

- Helianthus diancatus
- H. strumosus
- Helianthus sp. Canadense.
- Liatris cylindracea.
- L. scarosa.
- Aster multiflorus.
- A. undulatus.
- A. canescens.
- A. cordifolius.
- A. ptarmicoles.
- Quercus alba.
- Q. rubra.

Quercus ilicifolia.
Pinus resinosa.
Juniperus Sabina, var. procumbens.
Picea patula.
Lithospermum birtum.
Asclepias tuberosa.
Euphorbia corollata.
Lathyrus maritimus.
Solidago bicolor.
S. nemoralis.
S. arguta.

This vegetation, characterized as it is by a monotonous sameness of aspect, may be considered as affording a fair, though by no means
a complete, representation of the Flora of the sand-areas of the eastern coast of Lake Huron.

As the whole area explored, owing to geographical position and physical features generally, favours alike a northern, southern, and provincial climate, so we find the vegetation more or less naturally divided into three sections, which it is deemed proper to consider separately:

1. **Boreal Type.**—Species found in greater abundance on Lake Superior and northward, and most of which have migrated southward.

2. **Provincial Type.**—Species more or less generally distributed throughout the Province.

3. **Austral Type.**—Species more characteristic of more southern latitudes, and which have probably migrated from the south.

Boreal Type.—The species partaking of an undoubted boreal nature are for the most part confined to the Bruce Peninsula, the southern portion of the Georgian Bay, and the so-called Fishing Islands lying a few miles off the Bruce coast of Lake Huron. The southern limit may be set at the mouth of the Rivière aux Sables (north), south of which, as has been remarked above, the vegetation approaches that of the sandy plains of the Aux Sables further south. Strictly speaking, however, plants of a marked northern range are of frequent occurrence throughout the Province, distributed more especially through our swamps of tamarack and cedar. It is well known that districts whose drainage is impeded by physical or other causes become natural sources and habitats of plants demanding a temperature much below that required by our woodland species, or those on the southern slopes of our sand and gravel ridges. Botanically considered, these swamps or peat bogs dimly represent outliers or isolated portions of the great Arctic-Scandinavian Flora, and thus with historic interest bear testimony, as conclusive as do the Alpino-Arctic types of the White Mountains and the Pyrenees, to the former almost universal extension of the Arctic Flora over the temperate zone, and its comparative degree of continuity, as evinced by the occurrence of representative species in regions physically adapted for boreal forms. These depressions of surface occupied by peat bogs, or lakes and ponds with which such localities are often studded, are of frequent occurrence throughout the area indicated by the title of this paper. From the plains of the Aux Sables (south) to the latitude of Goderich, the Cedar (Thuja occidentalis) is eminently charac-
characteristic; whilst north of this line the Tamarack (Larix American) holds almost universal sway. In all cases we meet with a profusion of Ericaceous shrubs, bolts and clumps of evergreens, and a mossy carpeting, knee-deep with the sphagnum species *S. cymbifolium* and *S. acutifolium*. Here also are found in frequent abundance the following mosses, all apparently of high western and northern range:

<table>
<thead>
<tr>
<th>Hypnum cernifolium</th>
<th>Dicranum Schraderi</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. giganteum</td>
<td>D. undulatum</td>
</tr>
<tr>
<td>H. uncinatum</td>
<td>D. Drascomontii</td>
</tr>
<tr>
<td>H. silens</td>
<td>Mnium affine</td>
</tr>
<tr>
<td>H. Blandavii</td>
<td>Bryum binum</td>
</tr>
<tr>
<td>H. tamaricinum</td>
<td>Fissidens adiantoides</td>
</tr>
</tbody>
</table>

Intimately associated with the latter, but less abundantly distributed, occur the sedges *Carex teretisscula*, *C. stricta*, *C. irrigua*, *C. vaginata*, *C. riparia*, *C. utriculata*, *C. filiformis*, *C. flava*, *C. gynocrates*, *C. tenella*, *C. canescens*, *C. triperna*, *C. flexilis*, and *C. entumescens*. The usual monotonous appearance of this meadow herbage is to some extent modified by the growth of the grasses *Muhlenbergia glomerata*, *Phragmites communis*, *Calamagrostis Canadensis*, Phalaris arundinacea, *Glyceria elongata*, and *G. Nervata*; whilst the minor flora is marked by the luxuriant orchidaceous growth of *Platanthera dilatata*, *P. hyperborea*, *P. obtusa*, *P. orbicularia*, *Cypripedium pubescens*, *C. spectabile*, *C. arietinum*, *C. aculeolus*, *Calypso borealis*, and *Calopogon pulchellus*. The district comprised between Cabot's Head, the most northern projection of the County of Bruce, and a line drawn from Owen Sound to Chief's Point on Lake Huron, will be found to include the majority of the most truly boreal forms of the eastern shore of Lake Huron. This area is, botanically considered, almost distinct enough to admit of a separate consideration, but owing to the present immature stage of our knowledge regarding its more inland vegetation, such a limitation in the present instance would be altogether unadvisable. The following list may be considered as containing the more characteristic boreal forms found within our area:

<table>
<thead>
<tr>
<th>Thalictrot dioicum</th>
<th>Lobelia Jalmii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coptis trifolia</td>
<td>Campanula rotundifolia</td>
</tr>
<tr>
<td>Drosera rotundifolia</td>
<td>Vaccinium oxyhydropon</td>
</tr>
<tr>
<td>D. longifolia</td>
<td>Kalmia glauca</td>
</tr>
<tr>
<td>D. linearia</td>
<td>Ledum palustre</td>
</tr>
<tr>
<td>Parnassia palustris</td>
<td>Pyrola rotundifolia</td>
</tr>
</tbody>
</table>
Stellaria borealis.
Polygala paniculata.
Lathyrus ochraconus.
Potentilla ameriana.
P. Norvegica.
Epilobium palustre.
Hippuris vulgaris.
Ribes rubrum.
R. lacustris.
Corpus stolonifera.
Lianea borealis.
Lonicera caerulea.
Galium boreale.
Saldago Houghtonii.
Aster borealis.
Eranthis Huizonicus.
Arctonous Canadensis.
Clusia undulatum.
Hieracium Canadense.
Nabalus racemosus.
Alpmeenus aristatus.
Galanthusstrictus.
C. Canadensis.
Chama arundinacea.
Graptopetalum scotochiloides.
Glyceria aquatica.

Pyrola secunda.
Moneses uniflora.
Primula Miattassine.
Physalis granulifera.
Holonia delitexa.
Rumex salicifolia.
Platanthera orbiculata.
P. oblongata.
P. hyperborea.
P. dilatata.
Allium Schenepopraeum.
Tofedlia glutinosa.
Scirpus sylvaticus.
S. cepitosus.
Carex flexilis.
C. lenticularis.
C. groenlandica.
C. scirpoides.
C. Boluxmannia.
C. Monsporuma.
Triticum repens.
Asplidium lonchitis.
Asplenium viride.
Cetraria islandica.
Cetraria nigrilamura.
Schloglina scotinoides.

Many of the above-named species are confined to the Bruce Peninsula, and are apparently southern weeds from the more northern sub-arctic vegetation of the Lake Superior region, encouraged hither by a damp climate, a low temperature, and a great radiation of heat and moisture. These interesting wanderers suggest many reflections, of which the most attractive is that relating to the common origin, subsequent dispersion, and final segregation in the temperate regions of the northern and southern hemispheres, of many of the forms above enumerated. Of their birth-places as species, nothing is yet definitely known; whilst to account for their dispersion and segregation, only one theory has been advanced that is at the same time tenable and probable. We allude to Mr. Darwin's famous hypothesis which assumes that these and other boreal types were driven from our temperate latitudes into the Torrid Zone during the cold of the Glacial Epoch, and, on the return of warmth, retreated in opposite directions back towards the Poles, ascending to the Alpine summits of the mountains that crossed their line of march. This is not the
place wherein to discuss this plausible theory, though in passing it may be remarked that it demands a persistence of specific type through enormous periods of time, and over enormous areas, and under ineluctable changes of conditions, that at first sight tells with considerable force against Darwin's own theory of the origin of species by natural selection.

Provincial Type.—Throughout the wooded district of the east coast, occur a number of species of very wide distribution over the whole Dominion. These are found diffused through the Provinces from Newfoundland to Lake Superior, and are eminently Canadian in type.

Austral Type.—As we proceed southward from the Bruce Peninsula towards the Rivière aux Sables (south), we come upon a vegetation approaching more and more to that of the coast of Lake Erie, or that of the western portion of the State of New York. The forests south of the Maitland, and more particularly those of the Bayfield and Aux Sables Rivers, are characterized by an abundance of Oak, (Quercus rubra, Q. macrocarpa, Q. coccinea, Q. alba), and Red Pine (Pinus resinosa); and outlying patches of the White Pine (Pinus strobus), are of frequent occurrence over the southern part of Huron County, and the Township of Besanquet, in the County of Lambton. The Tulip Tree, or so-called White wood (Liriodendron tulipifera), decidedly a south-western type, and heretofore reported only from that portion of Ontario circumscribed by London, Hamilton, St. Catharines, and Sandwich, is found in great abundance along the Lake, and inland from the Township of Saranai northward to the valley of the Bayfield River—the latter locality being its most northern home in North America. Among the sands of the Rivière aux Sables, and growing abundantly with the Red Pine and Staghorn Sumach (Rhynchosia), was found the southern Quercus ilicifolia, the Black Scrub Oak, a straggling shrub from three to eight feet in height, with pinnate leaves, whitish-downy beneath, a submarginated cup and ovoid acorn. In the intercalate lands of the above-named rivers grows in great abundance the Buttonwood (Platanus occidentalis), a tree which further south, along the mud-flats of the Thames, attains gigantic proportions. Here too are found in greater or less abundance the Black Walnut (Juglans nigra), the Flowering Dogwood (Cornus florida), the thick, shell-bark Hickory (Carya ovata), the American Crab Apple (Pyrus coronaria), the Sassafras
(S. officinale), and the Euphorbia cerifera, all plants of southern origin, and elsewhere in Ontario but locally distributed—the range in almost every instance being south of their present locations. The Golden Club (Orontium Aquaticum), an aquatic perennial with a deep root-stock, and strongly-nerved floating leaves, was detected in a pond near the embouchure of the Bayfield River. This station is certainly wonderfully inland for a plant usually found delighting in ponds near the sea coast and in river marshes of the tide-water, being in its present habitat nearly 700 miles from the sea. Heretofore its more northern station has been a point about 400 miles up the valley of the Susquehanna, at Gilbertsville, in the County of Otsego, (Paine). On the wooded hillsides of the Aux Sables and Lake Burwell occurs the Chestnut (Castanea vesca), with its abundant as long as its leaves, and so numerous as to impart a yellowish hue to the whole tree when in blossom. Equally remarkable for its long pendulous aments of barren flowers hanging from the ends of its branches, though in other respects so dissimilar, is the shrubby Hazelnut (Corylus Americana), which in the barren plains of Bosanquet is found in great abundance, associated with the Red Pine, the Staghorn Sumach, and the Black Scrub Oak. The following species comprise the more important additional representatives of this division:

- Thalictrum anemonoides
- Hypericum calycinum
- Elymus stanspurparcus
- E. Americana
- Vitis riparia
- Lupinus perennis
- Erigenia bulbosa
- Gerardia integrifolia
- Aster levis, var. cyanos.
- Artemisia biennis
- Lobelia spicata
- Monarda didyma
- Physalis viscosa
- Proseres lanceolata
- Juncoa acuminata
- Panicum virgatum
If southern
- the range
- the station
The material with a
detected in
this station is
delighting in
water, being
Heretofore
miles up the
river of Otsego,
Lake Bur-
... as long as
it to the whole
long pendulous
its branches,
Hazel
... Bosquet is
the Staghorn
comprised
- the
- the
- the