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A space containing electric currents may be regarded as a field where energy is trans-

formed at certain points into the electric and magnetic kinds by means of batteries,

dynamos, thermoelectric actions, and so on, while in other parts of the field this energy

is again transformed into heat, work done by electromagnetic forces, or any form of

energy yielded by currents. Formerly a current was regarded as something travelling

along a conductor, attention being chiefly directed to the conductor, and the energy

which appeared at any part of the circuit, if considered at all, was supposed to be con-

veyed thither through the conductor by the current. But the existence of induced

currents and of electromagnetic actions at a distance from a primary circuit from

which they draw their energy, has led us, under the guidance of Fakaday and

Maxwell, to look upon the medium surrounding the conductor as playing a very

important part in the development of the phenomena. If we believe in the continuity

of the motion of energy, that is, if we believe that when it disappears at one point

and reappears at another it must have passed through the intervening space, we are

forced to conclude that the surrounding medium contains at least a part of the energy,

and that it is capable of transferring it from point to point,

Upon this basis Maxwell has investigated what energy is contained in the

medium, and he has given expressions which assign to each part of the field a quantity

of energy depending on the electromotive and magnetic intensities and on the

nature of the matter at that part in regard to its specific inductive capacity and

magnetic permeability. These expressions account, as far as we know, for the whole

energy. According to Maxwell's theory, currents consist essentially in a certain

distribution of energy in and around a conductor, accompanied by transformation and

consequent movement of energy through the field.

Starting with Maxwell's theory, we are naturally led to consider the problem,

How does the energy about an electric current pass from point to point—that is, by

what paths and according to what law does it travel from the part of the circuit where



344 PROFESSOR J. H. POYNTING ON THE TRANSFER

it is first recognisable as electric and magnetic to the parts where it is changed into

heat or other forms ?

The aim of this paper is to prove that there is a general law for the transfer of

energy, according to which it moves at any point perpendicularly to the plane con-

taining the lines of electric force and magnetic force, and that the amount crossing

unit of area per second of this plane is equal to the product of the intensities of the

two forces multiplied by the sine of the angle between them divided by An, while the

direction of flow of energy is that in which a right-handed screw would move if turned

round from the positive direction of the electromotive to the positive direction of the

magnetic intensity. After the investigation of the general law several applications

will be given to show how the energy moves in the neighbourhood of various current-

bearing circuits.

The following is a general account of the method by which the law is obtained.

If we denote the electromotive intensity at a point (that is the force per unit of

positive electrification which would act upon a small charged body placed at the point)

by (§, and the specific inductive capacity of the medium at that point by K, the

magnetic intensity (that is, the force per unit pole which would act on a small north-

seeking pole placed at the point) by § and the magnetic permeability by /x,

Maxwell's expression for the electric and magnetic energies per unit volume of the

field is

K^/8ir+fx^/87r (I)

If any change is going on in the supply or distribution of energy the change in this

quantity per second will be

K(&*g/4*+tf <§/** (2)

According to Maxwell the true electric current is in general made up of two parts
?

one the conduction current jt, and the other due to change of electric displacement in

the dielectric, this latter being called the displacement current. Now, the displace-

ment is proportional to the electromotive intensity, and is represented by K@/4tt, so

that when change of displacement takes place, due to change in the electromotive

intensity, the rate of change, that is, the displacement current, is K — /47r, and this is
Cvv

equal to the difference between the true current (S and the conduction current $.

Multiplying this difference by the electromotive intensity (g the first term in (2)

becomes

gf|*==<8<g-,jt<8 . (3)

The first term of the right side of (3) may be transformed by substituting for the

components of the total current their values in terms of the components of the

magnetic intensity, while the second term, the product of the conduction current
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and the electromotive intensity, by Ohm's law, which states that <ft=C®, becomes

$2/C, where C is the specific conductivity. But this is the energy appearing as heat

in the circuit per unit volume according to Joule's law. If we sum up the quantity

iii (3) thus transformed, for the whole space within a closed surface the integral of the

first term can be integrated by parts, and we find that it consists of two terms

—

one an expression depending on the surface alone to which each part of the surface

contributes a share depending on the values of the electromotive and magnetic inten-

sities at that part, the other term being the change per second in the magnetic energy

(that is, the second term of (2)) with a negative sign. The integral of the second

term of (3) is the total amount of heat developed in the conductors within the surface

per second. We have then the following result.

The change per second in the electric energy within a surface is equal to a quantity

depending on the surface—the change per second in the magnetic energy—the heat

developed in the circuit.

Or rearranging.

The change per second in the sum of the electric and magnetic energies within a

surface together with the heat developed by currents is equal to a quantity to which

each element of the surface contributes a share depending on the values of the electric

and magnetic intensities at the element. That is, the total change in the energy is

accounted for by supposing that the energy passes in through the surface according to

the law given by this expression.

On interpreting the expression it is found that it implies that the energy flows as

stated before, that is, perpendicularly to the plane containing the lines of electric and

magnetic force, that the amount crossing unit area per second of this plane is equal to

the product

electromotive intensity x magnetic intensity x sine included angle

4z7T

while the direction of flow is given by the three quantities, electromotive intensity,

magnetic intensity, flow of energy, being in right handed order.

It follows at once that the energy flows perpendicularly to the lines of electric force,

and so along the equipotential surfaces where these exist. It also flows perpendicu-

larly to the lines of magnetic force, and so along the magnetic potential surfaces where

these exist. If both sets of surfaces exist their lines of intersection are the lines of

flow of energy.

The following is the full mathematical proof of the law :

—

The energy of the field may be expressed in the form (Maxwell's e Electricity/

vol. ii., 2nd ed., p. 253)

1
2

1
(Pf-\-Qg-{-l&h)dxdydz-\---~

j

[aa Ĵ b^^cy)dxdydz

the first term the electrostatic, the second the electromagnetic energy.
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K
But sincef=— P

5
with corresponding values for g and h

9
and a=fta., 6=/x/3, c=/xy,

substituting, the energy becomes

K
Stt .

(P»+Q*+Ks)cfoafydz+
M
8tt

(a?-\-/3P-\-'f)dxdydz . . . . (1)

Let us consider the space within any fixed closed surface. The energy within this

surface will be found by taking the triple integrals throughout the space.

If any changes are taking place the rate of increase of energy of the electric and

magnetic kinds per second is

K
4:7T

p i q —

—

lR —^ ) dxdydz+
t

dt ^ dt ' dt I *
l

4tt

t*
r / da
a

dt
(2)

Now Maxwell's equations for the components of the true current are

, df v=cl+i.
dh

dt
w=r-

dt

where p, q, r are components of the conduction current.

df . K ^P
But we may substitute for —- its value 7^ ~jj-, and so for the other two, and we

dt

obtain

47T dt

JLV CuX.

4tt at
L

K
L
dQ__

47r dt ^ >

K dR

4:7T dt
\w—r

• ««.«••• . . (3)

Taking the first term in (2) and substituting from (3) we obtain

4:TT J.

P ^r-4-Q -^7+R -j; )
dxdydz-

dt dt dt
{B(u—p)+Q(v—q)+T{(w—r)} dxdydz

*ww

(I?u+Qv+I&w)dxdydz— (Pp-{-Qq~{~J&r)dxdydz . . # . (4)

Now the equations for the components of electromotive force are (Maxwell, vol. ii.,

p. 222)
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=cy — bz —-r-—— =cz/ — 62 +r

QdG- dty • '"
I ^,= a2 —ex -——r-——-= az —cx-tQ

at dy

=zbx—ay——

—

-f-= ox
—ay+ 11

• • • • (5)

where P', Q', R' are put for the parts of P, Q, R which do not contain the velocities.

• * • • • •

Vu+Qv^^w=^(cy—bz)u+(az—cx)v^(bx—ay)iv+Yu+Q'v+'R\v

= — {(vc— iob)x-{-(iva— uc)y-\-(iib—va)z} -\-Vu-\-Q
)
'v-]r 'R

/w

= -(Xx+Yy+Zz)+Vfu+Q ,v+Kw

where X, Y, Z are the components of the electromagnetic force per unit of volume

(Maxwell, vol. ii., p. 227),

Now substituting Id (4) and putting for u, v, w their values in terms of the magnetic

force (Maxwell, vol. ii.
; p. 233) and transposing we obtain

K
47T

r /*

P -rr+Q ^7+R— ) dxdydz+
dt

{
(Xx+Yy+Zz) -f (Pp+ Q?+Sr) } dxdydz

W *' V

47TjJ

1

dt '

"*""

dt

(P'n -{-Q'v-\r'R'w)dxdydz

p' (^_ dA\ . o' (^-^)+K /^--) [dxdydz
\dy dz}~^ \dz . dx/ \dx dy/ ( J

47T

1

4*7T

47T.

(R'—— Q' t~ )
dxdydz

% dx dx/

P' ~—R' — ) dxdydz
dy dy/

, <&* , (2/9 i 7 7 7

dz

Integrating each term by parts]

47T
(R^-QV^^-L

j
(Fy-R/

a)rfjwfo+

4*7T

I
47T

fl^_ *?'_l ^— ^4- ^_flF ^ Y j,v> T Y
ciy dy J~ *

f r

(Q'a—Vp)dxdy

ax dx dz dz
dxdydz

[The double integral being taken over the surface]

1

47T

,

{«(R
/

i8-QV)+m(P
,y-R/a)+w(Q /a-P /

i8)}dS

47T

'dQ' dW\ fdW dV'\ (dY dQ ,s

a {

~
r"— dy )+p \~iz-~i: 1+7dz dx dx

dxdydz . . . (6)
dz J

' ' \dy

where I, m, n are the direction cosines of the normal to the surface outwards.

2 Y 2
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But from the values of P', Q', R' m (5) we see that

similarly

dz dy

d*G cPyJt dm cPyfr

dtdz dxdz dtdy dzdx

d fdR dG y

dt

dU' dP* db

dt\dy dz

=H=ll T, (Maxwell, vol. ii., p. 216)
dt

__ __ d/3

dx dz dt dt

dF dty dc

dz

dy

dx dt ^ dt

Whence the triple integral in (6) becomes

47T,
a

C

~+fi -J7+7^ )
dxdydz

dt dt dt

Transposing it to the other side we obtain

K
4-7T rf+Qf+KfW^+i;

J J

a
da n d/3 dy

dt+P-J7+Ydt dt))
dxdydz

rrr . . . " r

r

+ (Xx-\-Yy-{-Zz)dQcdydz-{- (Pp-\-Qq-\-~Rr)dxdydz
j j j j j j

=^ff{Z(R
/

y8-QV)+m(PV-R/a)+n(Q,a-P/

i
8)}dS .... (7)

The first two terms of this express the gain per second in electric and magnetic

energies as in (2). The third term, expresses the work done per second by the electro-

magnetic forces, that is, the energy transformed by the motion of the matter in which

currents exist. The fourth term expresses the energy transformed by the conductor

into heat, chemical energy, and so on ; for P, Q, R are by definition the components

of the force acting at a point per unit of positive electricity, so that Ppdxdydz or

Vdxpdydz is the work done per second by the current flowing parallel to the axis of x

through the element of volume dxdydz. So for the other two components. This is in

general transformed into other forms of energy, heat due to resistance, thermal effects

at thermoelectric surfaces, and so on.

The left side of (7) thus expresses the total gain in energy per second within the

closed surface, and the equation asserts that this energy comes through the bounding

surface, each element contributing the amount expressed by the right side.

This may be put in another form for if (S' be the resultant of P', Q'
?
R', and 9 the
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angle between its direction and that of <§, the magnetic intensity, the direction cosines

L, M, N of the line perpendicular to the plane containing @' and <§ are given by

L
"~(T£sin0 ; ^"G^sinfl 5 (T£sm0

so that the surface integral becomes

1 ff
<r#sm 0(Ll+M.m+T$n)dS.

4tt

If at a given point dS be drawn to coincide with the plane containing (g' and «§, it

then contributes the greatest amount of energy to the space ; or in other words the

energy flows perpendicularly to the plane containing (g' and «§, the amount crossing

unit area per second being (£'<§ sin O/iir. To determine in which way it crosses the

plane take (£' along Oz, <§ along Qy. Then

F=0 Q'=0 |'=1

»=° |=1 y=°

and if sin 0= 1

L=l M=0 N=0

If now the axis Ox be the normal to the surface outwards, 1=1, m=0, n=0, so that

this element of the integral contributes a positive term to the energy within the sur-

face on the negative side of the yz plane ; that is, the energy moves along xO, or in the

direction in which a screw would move if its head were turned round from the positive

direction of the electromotive to the positive direction of the magnetic intensity. If

the surface be taken where the matter has no velocity, ©' becomes equal to (§, and the

amount of energy crossing unit area perpendicular to the flow per second is

electromotive intensity x magnetic intensity x sine included angle

4?r

Since the surface may be drawn anywhere we please, then wherever there is both

magnetic and electromotive intensity there is flow of energy.

Since the energy flows perpendicularly to the plane containing the two intensities,

it must flow along the electric and magnetic level surfaces, when these exist, so that

the lines of flow are the intersections of the two surfaces.

We shall now consider the applications of this law in several cases.
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Applications of the Law of Transfer of Energy.

(1.) A straight wire conveying a current.

In this case very near the wire, and within it, the lines of magnetic force are circles

round the axis of the wire. The lines of electric force are along the wire, if we take

it as proved that the flow across equal areas of the cross section is the same at all

parts of the section. If A B, fig. 1, represents the wire, and the current is from A to B,

Fig. 1.

then a tangent plane to the surface at any point contains the directions of both the

electromotive and magnetic intensities (we shall write E.M.I, and M.I. for these

respectively in what follows), and energy is therefore flowing in perpendicularly

through the surface, that is, along the radius towards the axis. Let us take a portion

of the wire bounded by two plane sections perpendicular to the axis. Across the

ends no energy is flowing, for they contain no component of the E.M.I. The whole of

the energy then enters in through the external surface of the wire, and by the general

theorem the amount entering in must just account for the heat developed owing to

the resistance, since if the current is steady there is no other alteration of energy. It

is, perhaps, worth, while to show independently in this case that the energy moving

in, in accordance with the general law, will just account for the heat developed.

Let r be the radius of the wire, i the current along it, a the magnetic intensity at

the surface, P the electromotive intensity at any point within the wire, and Y the

difference of potential between the two ends. Then the area of a length I of the wire

is 2irrl, and the energy entering from the outside per second is

area x E.M.I x M.I 2ittIY.ol

47T 4tt

2irretJ?l

47T

47nV

4.7T

••iV
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for the line Integral of the magnetic Intensity 2rrra round the wire is 4tt X current

through it, and PZ=V.

But by Ohm's law V=iR and iY=i2R, or the heat developed according to Joule's

law.

It seems then that none of the energy of a current travels along the wire, but that

it comes in from the nonconducting medium surrounding the wire, that as soon as it

enters it begins to be transformed into heat, the amount crossing successive layers of

the wire decreasing till by the time the centre is reached, where there is no magnetic

force, and therefore no energy passing, it has all been transformed into heat. A con-

duction current then may be said to consist of this inward flow of energy with its

accompanying magnetic and electromotive forces, and the transformation of the energy

into heat within the conductor.

We have now to inquire how the energy travels through the medium on its way to

the wire.

(2.) Discharge of a condenser through a wire.

We shall first consider the case of the slow discharge of a simple condenser consist-

ing of two charged parallel plates when connected by a wire of very great resistance,

as in this case we can form an approximate idea of the actual path of the energy.

Fig. 2.

Let A and B, fig. 2, be the two plates of the condenser, A being positively and B
negatively electrified. Then before discharge the sections of the equipotential surfaces

will be somewhat as sketched. The chief part of the energy resides in the part of the

dielectric between the two plates, but there will be some energy wherever there is

electromotive intensity. Between A and B the E.M.L will be from A to B, and every-
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where it is perpendicular to the level surfaces. Now connect A and B by a fine wire

LMNof very great resistance, following a line of force and with the resistance so

adjusted that it is the same for the same fall of potential throughout. We have

supposed this arrangement of the resistance so that the level surfaces shall not be

disturbed by the flow of the current. The wire is to be supposed so fine that the

discharge takes place very slowly.

While the discharge goes on a current flows round LMNin the direction indicated

by the arrow, and there is also an equal displacement current from B to A due to the

yielding of the displacement there. The current will be encircled by lines of magnetic

force, which will in general form closed curves embracing the circuit. The direction

of these round the wire will be from right to left in front, and round the space between

A and B from left to right in front. The E.M.L is always from the higher level

surfaces—those nearer A, to the lower—those nearer B, both near the wire and in the

space between A and B.

Now, since the energy always moves perpendicularly to the lines of E.M.I, it must

travel along the equipotential surfaces. Since it also moves perpendicularly to the

lines of M.I. it moves, as we have seen in (1), inwards on all sides to the wire, and is

there all converted into heat—if we suppose the discharge so slow that the current is

steady during the time considered. But between A and B the E.M.I, is opposed to

the current, being downwards, while the M.I. bears the same relation to the current

as in the wire. Remembering that E.M.L, M.I., and direction of flow of energy are

connected by the right-handed screw relation, we see that the energy moves outwards

from the space between A and B. As then the strain of the dielectric between A and

B is gradually released by what we call a discharge current along the wire L M N,

the energy thus given up travels outwards through the dielectric following always the

equipotential surfaces, and gradually converges once more on the circuit where the

surfaces are cut by the wire. There the energy is transformed into heat. It is to be

noticed that if the current may be considered steady the energy moves along at the

same level throughout.

(3.) A circuit containing a voltaic cell

When a circuit contains a voltaic cell we do not know with certainty what is the

distribution of potential, but most probably it is somewhat as follows :*—Suppose we

* It seems probable ihat the only legitimate mode of measuring the difference of potential between

two points in a circuit consisting of dissimilar conductors carrying a steady current, consists in finding

the total quantity of energy given out in the part of the circuit between the two points while unit

quantity of electricity passes either point. If this is the case, it seems impossible that the surface of

contact of dissimilar metals can be the chief seat of the electromotive force, for we have only the very

slight evolution or absorption of energy there due to the Peltier effect. I have therefore adopted the

theory of the voltaic circuit in which the seat of at least the chief part of the electromotive force is at

the contact of the acid and metals. The large differences of potential found by electrometer methods
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have a simple copper, zinc, and acid cell producing a steady current. There is probably

a considerable sudden rise in passing from the zinc to the acid, the place where the

chemical energy is given up, a fall through the acid depending on the resistance, a

sudden fall on passing from the acid to the copper, where some energy is absorbed with

evolution of hydrogen, and then a gradual fall through the wire of the circuit round to

the zinc again. There will be a slight change of potential in passing from copper to zinc,

but this we shall neglect for simplicity. The equipotential surfaces will probably then

be somewhat as sketched in fig. 3,* all the surfaces starting from where the acid comes

in contact with the zinc, some of the highest potential passing through the acid, others

passing between the acid and copper, and crowding in there, the rest lower than these

cutting the circuit at right angles in points at intervals representing equal falls of

potential.

Fig. 3.

If this be the actual arrangement, then it is seen that the current which travels round

the circuit from zinc through acid to copper, is in opposition to the E.M.I, between the

zinc and acid, while the M.I. is related to the current in the ordinary way. The energy

will therefore pass outwards from there along the level surfaces. In fact, the medium
between the zinc and acid behaves like the medium between the plates of the condenser

in case No. (2), and it seems possible that the chemical action produces continually

fresh " electric displacement " from acid towards zinc which yields as rapidly as it is

formed, the energy of the displacement moving out sideways.

between the air near two different metals in contact, are in this theory to be accounted for by the suppo-

sition that the air acts in a similar manner to an oxidising electrolyte. A short statement of the theory

is given in a letter by Professor Maxwell in the ' Electrician' for April 26th, 1879, quoted in a note on

page 149 of his { Elementary Treatise on Electricity/ See also § 249, vol. i., Maxwell's 'Electricity and
Magnetism.'—June 19, 1884.

* In this and the succeeding cases the circuit is alone supposed to cause the distribution of potential.

In actual cases the surfaces would probably be very much deflected from their normal positions in the

dielectric through the presence of conductors, electrified matter, and so on,

MDCCCLXXXIV. 2 Z
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Some of this energy which travels along the highest level surfaces will converge on

the acid, and there be, at any rate, ultimately converted into heat. Some of it will

move along those surfaces which crowd in between the acid and copper and there

converge to supply the energy taken up by the escaping hydrogen. The rest spreads

out to converge at last at different parts of the circuit, and there to be transformed

into heat according to Joule's law.

It may be noticed that if the level surfaces be drawn with equal differences of

potential, equal amounts of energy travel out per second between successive pairs of

surfaces. For the amount transformed in the circuit in a length having a given differ-

ence of potential V between its ends will be V X current, and therefore the amount

transformed between each pair of surfaces drawn with the same potential difference

will be the same. But since the current and the field are steady, the energy trans-

formed will be equal to the energy moving out from the cell between the same surfaces

—the energy never crossing level surfaces. This admits of a very easy direct proof,

but the above seems quite sufficient.

This result has a consequence, which though already well known, is worth mention-

ing here. Let Vx
be the difference of potential between the zinc and acid, V3 that

between the acid and copper. If i be the current, Vx
i is the total energy travelling

out per second from the zinc surface. Of this Y^i is absorbed at the copper surface,

the rest, viz., (Vi—

V

3
)i, being transformed in the circuit. The fraction, therefore, of

the whole energy sent out which is transformed in the circuit is -i
r=
—

-, a result analo-

gous to the expression for the amount of heat which can be transformed into work in

a reversible heat engine.

One or two interesting illustrations of this movement of energy may be mentioned

here in connexion with the voltaic circuit.

Suppose that we are sending a current through a submarine cable by a battery with,

say, the zinc to earth, and suppose that the sheath is everywhere at zero potential.

Then the wire will everywhere be at higher potential than the sheath, and the level

surfaces will pass from the battery through the insulating material to the points where

they cut the wire. The energy then which maintains the current, and which works

the needle at the further end, travels through the insulating material, the core serving

as a means to allow the energy to get in motion.

Again, when the only effect in a circuit is the generation of heat, we have energy

moving in. upon the wire, there undergoing some sort of transformation, and then

moving out again as heat or light. If Maxwell's theory of light be true, it moves

out again still as electric and magnetic energy, but with a definite velocity and inter-

mittent in type. We have in the electric light, for instance, the curious result that

energy moves in upon the arc or filament from the surrounding medium, there to be

converted into a form which is sent out again, and which, though still the same in kind,

is now able to affect our senses.
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(4.) Thermoelectric circuits.

Let us first take the case of a circuit composed of two metals, neither of which has

any Thomson effect. Let us suppose the current at the hot junction from the metal

A to the metal B, fig. 4. According to Professor Tait's theory it would appear that

Fig. 4.

the E.M.I, at the hot junction is to that at the cold as the absolute temperature at

the hot is to that at the cold junction. If the current is steady there is probably then

a sudden rise in potential from A to B at the hot junction, a gradual fall along B, a

sudden fall at the cold junction—less, however, than the sudden rise at the other

—

and a gradual fall along A. The level surfaces will then all start from the hot

junction, the higher ones cutting the circuit at successive points along B, several

converging at the cold junction, and the rest cutting the circuit at successive points

along A. The heat at the hot junction is converted into electric and magnetic energy,

which here moves outwards, since the current is against the E.M.I. Some of this

energy converges upon B and A, to be converted into heat, according to Joule's law,

and some on the cold junction, there producing the Peltier heating effect.

Let us now suppose that we have a circuit of the same two metals, now all at the

same temperature, but with a battery interposed in B, which sends a current in the

same direction as before (fig. 5). Then if C be the junction which was hot, and I)

that which was cold in the last case, we know that the current will tend to cool C and

to heat D. In going from A to B at C there will be a sudden rise of potential, and

in going from B to A at D there will be a sudden fall. Then, since the potential falls,

as we go with the current along A, there will be a point on A near C which has the

2 z 2
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same potential as B at the junction. From this point to C, A will have lower

potentials, and points with the same potentials will exist on B between C and the

battery. Then either the level surfaces passing through C are closed surfaces, cutting

A or B, and not passing through the battery at all, or, as seems much more probable,

the surfaces from the battery which pass through C cut the circuit in three points in

all outside the battery : once somewhere along A, once at 0, and once somewhere

along B. I have drawn and numbered the surfaces in the figure on this supposition.

The heat developed in the parts of the circuit near C will thus be partly supplied

Fig. 5.

Fig. 6.

from the junction C, where the current is against the E.M.I. The energy therefore

moves out thence, giving a cooling effect.

The Thomson effect may be considered in somewhat the same way. Let us suppose
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that a metal B C of the iron type, and with temperature falling from B to C, forms

part of a circuit between two neutral metals of the lead type A B and G D, fig. 6, and

let us further, for simplicity, suppose that these metals are each at the neutral

temperatures with respect to B 0, so that there is no E.M.I. at the junction. If we
drive a current from A to D by means of some external E.M.I., say at a junction else-

where in the circuit, the potential will tend to fall from A to D. But a current in

iron from hot to cold cools the metal, that is, the E.M.I, appears to be in opposition

to the current, so that the energy moves outwards. The potential, therefore, tends to

rise from B to C, and actually will do so if the resistance of B C is negligable com-

pared with that of the rest of the circuit. In this case the level surfaces will probably

be somewhat as indicated in the figure (6), where they are numbered in order, each

surface which cuts B C also cutting A B and C D, and the energy moving outwards

will come into the circuit again at the parts of A B and C D near the junctions, where

it will be transformed once more into heat. If the resistance of B C be gradually

increased the fall of potential, according to Ohm's law, will tend to lessen the rise, and

fewer surfaces will cut B 0. It would seem possible so to adjust matters that the two

exactly neutralised each other so that no energy either entered or left B C. In this

case we should only have lines of magnetic force round B C, and no other characteristic

of a current in that part of the circuit.*

If this is the true account of the Thomson effect it would appear that it should be

described not as an absorption of heat or development of heat by the current but

rather as a movement of energy outwards or inwards, according as the E.M.L in the

unequally heated metal opposes or agrees with the direction of the current,

(5.) A circuit containing a motor.

This case closely resembles the third case of a circuit containing a copper-zinc cell,

the motor playing a part analogous to that of the surface of contact of the acid with

the copper. Let us, for simplicity, suppose that the motor has no internal resistance.

When it has no velocity all the level surfaces cut the circuit, and the energy leaving

the dynamo or battery is all transformed into heat due to resistance. But if the

motor is being worked the current diminishes, the level surfaces begin to converge on

the motor and fewer cut the circuit. Some of the energy therefore passes into the

motor, and is there transformed into work. As the velocity increases the number

cutting the rest of the circuit decreases, for the current diminishes, and, therefore, by

Ohm's law, the fall of potential along the circuit is less; and ultimately when the

* Perhaps this is only true of the wire as a whole. If we could study the effects in minute portions

it is possible that we should find the seat of the E.M.I, due to difference of temperature not the same as

that which neutralises it, which is according to Ohm's law. One, for instance, might be between the

molecules, the other in their interior, so that there might be an interchange of energy still going on,

though no balance remained over to pass out of the wire.
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velocity of the motor becomes very great the current becomes very small. In the

limit no level surface cuts the circuit, all converging on the motor. That is, all the

energy passes into the motor when it is transformed into work, and the efficiency of

the arrangement is perfect, though the rate of doing work is infinitely slow.

(6.) Induced currents.

It is not so easy to form a mental picture of the movement of energy which takes

place when the field is changing and induced currents are created. But we can see in

a general way how these currents are accounted for. When there is a steady current

in a field there is corresponding to it a definite distribution of energy. If there is a

secondary circuit present, so long as the primary current is constant, there is no E.M.I.

in the secondary circuit for it is all at the same potential The energy neither moves

into nor out of it, but streams round it somewhat as a current of liquid would stream

round a solid obstacle. But if the primary current changes there is a redistribution

of the energy in the field. While this takes place there will be a temporary E.M.I.

set up in the conducting matter of the secondary circuit, energy will move through

it, and some of the energy will there be transformed into heat or work, that is, a

current will be induced in the secondary circuit.

(7.) The electromagnetic theory of light.

The velocity of plane waves of polarised light on the electromagnetic theory may be

deduced from the consideration of the flow of energy. If the waves pass on unchanged

in form with uniform velocity the energy in any part of the system due to the disturb-

ance also passes on unchanged in amount with the same velocity. If this velocity be

v, then the energy contained in unit volume of cubical form with one face in a wave

front will all pass out through that face in l/vth of a second. Let us suppose that the

direction of propagation is straightforward, while the displacements are up and down;

then the magnetic intensity will be right and left. If (g be the E.M.I, and $$ the M.I.

within the volume, supposed so small that the intensities may be taken as uniform

through the cube, then the energy within it is K@s
/87r+/^s

/87r- The rate at which

energy crosses the face in the wave front is ©«§/47r per second, while it takes l/vth of a

second for the energy in the cube to pass out.

Then

M=k®8+a^8 m

Now, if we take a face of the cube perpendicular to the direction of displacement,

and therefore containing the M.I., the line integral of the M.I. round this face is equal

to 47r X current through the face. If we denote distance in the direction of propaga-
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tion from some fixed plane by z, the line integral of the M.I. is -f, while the current,
CvZ

being an alteration of displacement, is ——
Therefore

d$_j£dQ£ /

2
\........... ^ jdz ' dt

But since the displacement is propagated on unchanged with velocity v
9
the displace-

ment now at a given point will alter in time dt to the displacement, now a distance dz

behind, where dz=vdt.

Therefore

d® d® /oX

Substituting in (2)

dz ' dz

whence

<§=K?;(g (4)

the function of the time being zero, since «§ and (§ are zero together in the parts which

the wave has not yet reached.

If we take the line integral of the E.M.I, round a face perpendicular to the M.I.

and equate this to the decrease of magnetic induction through the face, we obtain

similarly

®=HV$ (5)

It may be noticed that the product of (4) and (5) at once gives the value of v, for

dividing out @ <§ we obtain

or

1
V= y

But using one of these equations alone, say (4), and substituting in (1) K for <§ and

dividing by (S
s
, we have

K K gKV
4tt
—

8tt 8tt

or

whence

V=7W
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This at once gives us the magnetic equal to the electric energy, for

87T 8-7T 8?r

It may be noted that the velocity -== is the greatest velocity with which the two

energies can be propagated together, and that they must be equal when travelling

with this velocity. For if v be the velocity of propagation and 6 the angle between,

the two intensities, we have

(g£siiifl_ K:(g» gffl

4:7TV S7T 87T

or

v.
2 sin

The greatest value of the numerator is 2 when is a right angle, and the least

value of the denominator is 2v//^K, when the two terms are equal to each other and

to v7 /xK.

1

The maximum value of v therefore is —7=^, and occurs when #:=~-and K@2
=ju,£>3.

The preceding examples will suffice to show that it is easy to arrange some of the

known experimental facts in accordance with the general law of the flow of energy. I

am not sure that there has hitherto been any distinct theory of the way in which the

energy developed in various parts of the circuit has found its way thither, but there

is, I believe, a prevailing and somewhat vague opinion that in some way it has been

carried along the conductor by the current. Probably Maxwell's use of the term
" displacement

7
' to* describe one of the factors of the electric energy of the medium has

tended to support this notion. It is very difficult to keep clearly in mind that this

" displacement" is, as far as we are yet warranted in describing it, merely a something

with direction which has some of the properties of an actual displacement in incom-

pressible fluids or solids. When we learn that the " displacement" in a conductor

having a current in it increases continually with the time, it is almost impossible to

avoid picturing something moving along the conductor, and it then seems only natural

to endow this something with energy-carrying power. Of course it may turn out that

there is an actual displacement along the lines of electromotive intensity. But it is

quite as likely that the electric " displacement" is only a function of the true displace-

ment, and it is conceivable that many theories may be formed in which this is the

case, while they may all account for the observed facts. Mr. Glazebrook has already

worked out one such theory in which the component of the electric displacement at
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1
any point in the direction of x is ~V2& where £is the component of the true displace-

ment (Phil Mag,, June, 1881). It seems to me then that our use of the term is

somewhat unfortunate, as suggesting to our minds so much that is unverified or false,

while it is so difficult to bear in mind how little it really means.

I have therefore given several cases in considerable detail of the application of the

mode of transfer of energy in current-bearing circuits according to the law given

above, as I think it is necessary that we should realise thoroughly that if we accept

Maxwell's theory of energy residing in the medium, we must no longer consider

a current as something conveying energy along the conductor. A current in a

conductor is rather to be regarded as consisting essentially of a convergence of

electric and magnetic energy from the medium upon the conductor and its transforma-

tion there into other forms. The current through a seat of so-called electromotive

force consists essentially of a divergence of energy from the conductor into the

medium. The magnetic lines of force are related to the circuit in the same way

throughout, while the lines of electric force are in opposite directions in the two parts

of the circuit,—with the so-called current in the conductor, against it in the seat of

electromotive force. It follows that the total E.M.I, round the circuit with a steady

current is zero, or the work done in carrying a unit of positive electricity round the

circuit with the current is zero. For work is required to move it against the E.M.I.

in the seat of energy, this work sending energy out into the medium, while an equal

amount of energy comes in in the rest of the circuit where it is moving with the E.M.I.

This mode of regarding the relations of the various parts of the circuit is, I am aware,

very different from that usually given, but it seems to me to give us a better account

of the known facts.

It may seem at first sight that we ought to have new experimental indications of

this sort of movement of energy, if it really takes place. We should look for proofs at

points where the energy is transformed into other modifications, that is, in conductors.

Now in a conductor, when the field is in a steady state, there is no electromotive

intensity, and therefore no motion and no transformation of energy. The energy

merely streams round the outside of the conductor, if in motion at all in its neighbour-

hood. If the field is changing energy can pass into the conductor, as there may be

temporary E.M.I, set up within it, and there will be transformation. But we already

know the nature of this transformation, for it constitutes the induced current. Indeed,

the fundamental equation describing the motion of energy is only a deduction from

Maxwell's equa tions, which are formed so as to express the experimental facts as far

as yet known. Among these are the laws of induction in secondary circuits, and they

must therefore agree with the law of transfer. We can hardly hope, then, for any

further proof of the law beyond its agreement with the experiments already known
until some method is discovered of testing what goes on in the dielectric independently

of the secondary circuit.

MDCCCLXXXIV. 3 A


