Zur Kenntnis des Pflanzenlebens schwedischer Laubwiesen.

Eine physiologisch-biologische und pflanzengeographische Studie.

Von

Henrik Hesselman,
Stockholm.

Mit Tafel IV—VIII und 29 Abbildungen im Text.

Jena.
Verlag von Gustav Fischer.
1904.
(Sonderabdruck aus den Beiheften zum botanischen Centralblatt, Jahrgang 1904).
Mitteilung aus dem botanischen Institut der Universität zu Stockholm.

Zur Kenntnis des Pflanzenlebens schwedischer Laubwiesen.

Eine physiologisch-biologische und pflanzengeographische Studie.

Von

Henrik Hesselman,
Stockholm.

Mit Tafel IV—VIII und 29 Abbildungen im Text.

Jena.
Verlag von Gustav Fischer.
1904.
Inhalt.

Vorwort ... 311
Kap. I. Die Physiognomie der Laubwiesen, deren wichtigste Pflanzenarten, Verbreitung und Verwandtschaft mit anderen Pflanzenformationen ... 312
Kap. II. Die Laubwiesen im östlichen Uppland, ihre Formationen und Entwicklungsgeschichte .. 318
Kap. III. Fragestellung und Methodisches ... 345
Kap. IV. Wärme und Hydrometeoren der Stationsinsel; Variation der Temperatur und der Feuchtigkeit der Luft an verschiedenen Standorten ... 349
Kap. V. Einige Bemerkungen über die Humusbildung 365
Kap. VI. Lichtbedürfnis der Bäume, Regelung der Sproßbildung und Reinigung der Krone, Lichtgenuss der Pflanzen in verschiedenen Baum- und Strauchbeständen ... 367
Kap. VII. Die Assimilationsintensität auf den sonnenoffenen Wiesen und in verschiedenen Baum- und Strauchbeständen ... 379
Kap. VIII. Über die Bedeutung des Frühlingslichtes für die Ausbildung des Assimilationsgewebes, insbesondere des Palisadenparenchym's der Blätter ... 402
Kap. IX. Versuche über die Transpiration der Pflanzen auf sonnenoffenen Wiesen und in Beständen, insbesondere in dichtgeschlossenen Haselhainen ... 410
Kap. X. Rückblick auf die erhaltenen Ergebnisse, die pflanzengeographischen Faktoren der Laubwiesen ... 447
Literaturverzeichnis ... 456
Tafelerklärung ... 460
Mitteilung aus dem botanischen Institut der Universität zu Stockholm.

Zur Kenntnis des Pflanzenlebens schwedischer Laubwiesen.

Eine physiologisch-biologische und pflanzengeographische Studie.

Von

Henrik Hesselman-Stockholm.

Mit Tafel IV–VIII und 29 Abbildungen im Text.

Vorwort.

Die meisten und wichtigsten Studien sind auf der Insel Skabbholmnen gemacht; dieselbe gehört zu Lidö im Kirchspiel Vätö im östlichsten Teil von Uppland. Diese Insel ist durch viele größere und kleinere Inseln gegen die Winde vom Meere her geschützt und liegt in der Zone, die Häyrrén (I) als die zweite Längszone in den östlichen finnischen Scheeren bezeichnet.

Im Sommer 1895 wurden hauptsächlich physiognomische Studien gemacht, in den Sommern 1899, 1900 und 1901 sind die meisten physiologischen und biologischen Untersuchungen ausgeführt worden.

Auch Privatpersonen haben meine Untersuchungen durch Geldmittel gefördert, nämlich Dr. med. E. Levin, die Herren Direktoren H. Levin und E. Rubenson, ebenso Dr. O. Rosenberg.

Von dem botanischen Institute der Universität in Stockholm habe ich durch das gültigste Entgegenkommen meines Lehrers und Freundes Professor G. Lagerheim die nötigen Instrumente und Utensilien erhalten. Mein
Hesselman, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen.

Freund Dr. Gunnar Andersson hat diesen Untersuchungen in jeder Hinsicht das größte Interesse gewidmet.

Endlich ist es mir noch eine angenehme Pflicht, meinem verehrten Lehrer, Herrn Professor F. R. Kjellman, meinen besten Dank anzusprechen für das stetige Interesse, mit welchem er immer meine Studien gefördert hat.

Die meisten Bäume Schwedens können als mehr oder minder wichtige Bestandteile der Laubwiesenvegetation auftreten; im mittleren Schweden finden wir die Eiche (Quercus robur), die Esche, die Linde (Tilia ulmifolia), die Birke (Betula verrucosa und odorata), die Schwarzerle (Alnus glutinosa), den Mehlbeerbbaum (Sorbus aucuparia, in den östlichen Küstengegenden dann und wann S. fenzli und S. aria), die Ulme (Ulmus montana) und den Ahorn (Acer platanoides). In gewissen Gebieten in Südschweden, besonders um den großen Binnensee Vättern herum, ist Alnus incana ein wichtiger Baum in diesen Pflanzenvereinen, eine Pflanze, die weiter nördlich allgemeiner wird. Die Buche findet man oft in Laubwiesen, die nördlichsten Vorposten dieses Baumes dürften gerade in Laubwiesen vorkommen. Im süd-
lichsten Teile des Landes kommen Quercus sessiliflora und Carpinus betulus als wichtige Bestandteile vor und auf Gotland ist Ulmus campestris gewöhnlich. Auf Öland trifft man sowohl diesen Baum als auch Ulmus effusa an, der letztere ist eine Seltenheit in der schwedischen Flora. Selten fehlen die Kiefer und die Espe.

Die offenen Wiesen zwischen den Baumgruppen zeichnen sich durch Standen mit vielköpfigen Wurzeln und rasenbildende Gräser aus, während die Arten mit weit kriechenden Rhizomen zurücktreten und an Bedeutung verlieren. Die Vegetationsdecke ist gewöhnlich so stark zusammengeschlossen, daß die Moosarten verdrängt werden. In erster Linie ist die Eichenflora vertreten; ihre Repräsentanten bilden zusammen mit vielen anderen Pflan-
zen eine besonders artenreiche, abwechslende und bunte Bodenvegetation.

Hesselman, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen. 315

Die Laubwiesen bilden so ein Glied in einer Reihe Pflanzenformationen, die vom südlichen Schweden an bis weit nach Norden verbreitet sind, die je nach den äußeren Bedingungen, wie Feuchtigkeit und Nahrungsvorrat des Bodens, Temperatur und Regenmenge, sehr wechselndes Aussehen haben, aber darin übereinstimmen, daß in der Waldscheitel, gewöhnlich ein Niederwald, aus verschiedenen, vielen Laubbäumen und Sträuchern gebildet, nicht ein oder zwei Arten, völlig dominiert, sondern mehrere miteinander gemischt vorkommen. Im Schatten der Bäume und Sträucher gedeiht oft eine reiche Kräuter- und Gräserflora, und wo der Baumbestand größere Lücken aufweist, bekommt die Vegetation einen wiesenähnlichen Charakter.

Die Laubwiesen von dem hier geschilderten Typus mit dem großen Reichtum an edlen Laubbäumen gehören eigentlich der Region der Eichenflora Schwedens an und haben ihre nördlichsten Vorposten in Dalekarlien (z. B. bei Osmundsberget), in Helsingland, Medelpad und Angermanland. In diesen Landschaften sind sie am meisten als Reliktförmungen aufzufassen, die von den sie umgebenden Waldformationen in ihrer Existenz mehr oder minder bedroht werden. Sie stehen hier als eine Erinnerung an die Zeit, wo die ganze Eichenwaldflora Schwedens weiter nach Norden verbreitet war. Über eine der am meisten charakteristischen Arten, nämlich über den Haselstrauß, hat in neuester Zeit Gunnar Andersson (I) ausführliche Studien angestellt, deren Hauptresultat ist, daß der Haselstrauß in Norrland von einem Gebiet von 84 000 qkm seit der Litorinazeit infolge einer Senkung der Sommertemperatur verdrängt worden ist. Hand in Hand mit der Hasel ist aller Wahrscheinlichkeit nach eine große Menge anderer südlicher Arten verdrängt worden, die beim höchsten Standes des Litorinameeres weite Laubwiesen gebildet hatten da, wo nun einförmige Nadelwälder
den Boden einnehmen oder Äcker und Felder der Menschen sich ausbreiten.

Ein großer Teil der jetzigen Laubwiesen dürfte auch als Rest des früheren Reichtums Schwedens an dieser Pflanzen-

Fig. 1. Vegetationsbild von einer Laubwiese bei Stocklycke auf Ombärg. Baumarten: Buche (*Fagus sylvatica*) und Birke (*Betula verrucosa*). Unterholz aus Hasel. Im Vordergrund eine feuchte Wiese mit *Rhamnus frangula*. Auct. foto 27.9.1903.

Bei unserer jetzigen Kenntnis der schwedischen Vegetation ist es nicht möglich, genauere Angaben über die Verbreitung der Laubwiesen zu machen und eine Karte über deren Vorkommen zu zeichnen. Nach den gewiß ganz spärlichen Angaben in der Literatur zu urteilen, sind sie am meisten in den Küstengegenden des Festlandes, auf den Inseln Öland und Gotland und um die größeren Seen herum verbreitet.

Im südlichsten Teil von Finnland trifft man diese Pflanzenvereine wieder, und auf Aland finden sie eine große Verbreitung,
hier zeigen sie die größte Übereinstimmung mit der Vegetation im östlichen Uppland.

Kap. II. Die Laubwiesen im östlichen Uppland, ihre Formationen und Entwicklungsgeschichte.

Die beigegebene Kartenskizze (Fig. 2.) veranschaulicht die Verbreitung der Laubwälder in Uppland und ist eine stark verkleinerte Wiedergabe der großen Waldkarte über den südlichen Teil von Schweden, welche die königlich-schwedische Domänenverwaltung für die Weltausstellung in Paris 1900 anfertigen ließ. Es sind auf dieser Skizze auch Birken- oder Esphenhaine mit den Laubwiesen vermischt gezeichnet, doch dürften dieselben nur eine untergeordnete Rolle spielen und die meisten mit schwarz bezeichneten Gebiete von Laubwiesen eingenommen werden. Es geht aus der Skizze auf das deutlichste hervor, daß diese Pflanzenformationen hauptsächlich in dem östlichen Teil vorkommen: ungefähr 90 % finden sich östlich von einer geraden Linie, die von der Nähe der Mündung des Olandsslusses (Olandsån) bis etwas westlich von Waxholm verläuft, westlich von dieser Linie kommen diese Pflanzenformationen vereinzelter vor.
Es dürfte mehrere Ursachen zu dieser ausgeprägten Ver-
teilung geben, in erster Linie aber dürften es zwei sein, nämli-
das Klima und der Boden. Das Seeclima mit dem milden
Herbst und Winter und der etwas größeren Luftfeuchtigkeit
dürfte für viele Bäume der Laubwiesen ungemein günstig sein;
in Dänemark erreichen nach den Angaben von Hauch und
Oppe1mann (1, p. 81) die Wälder aus Esche, Ahorn etc.
bestehend nur in Küstengegenden eine schönere Entwicklung.
Besonders dürften die ziemlich hohen Herbsttemperaturen für
das volle Ausreifen und Verholzen der Sprosse in gewissen
Fällen von Bedeutung sein. Die Herbstfröste sind nämlich nach
den Angaben von H. E. Hamberg (1) weit seltener in Stock-
holms län, umfassend den östlichen Teil von Uppland und
Södermanland, als in Uppsala län, d. h. dem mittleren Teil von
Uppland. Nach Andersson (4) sind für die Verbreitung des
Haselstrauces in den norrländischen Küstengegenden gerade
die Herbsttemperaturen von großem Einfluß.

Von nicht geringerer Bedeutung ist ohne Zweifel der Kalk-
gehalt des Bodens; die Moränenablagerungen im östlichen Uppland
sind, da die Eisströme von Gästrikland und dem südlichsten
Teile des Bottmischen Meerbusens Kalkgesteinsblöcke mit sich ge-
führt haben, mehr oder weniger reich an Kalk.

Wie die in Fig. 3 wiedergegebene Skizze lehrt, herrscht eine
gewiß nicht vollkommene, jedoch unverkennbare Übereinstim-
mung zwischen der Verbreitung der Laubwiesen und der des
kalkführenden Moränenkieses; auf diesem für die Kultur weniger
gzigneten Moränenmaterial haben die Laubwiesen eine gegen den
Angriff der Menschen und den der konkurrierenden Formationen
g geeignete Entwicklungsstätte gefunden. Sonst sind die Laub-
wiesen von den großen Gebieten, die sie früher eingenommen
haben, durch die Kultur verdrängt worden; im östlichen Uppland
ist die Verteilung von Nadel- und Laubwäldern samt von
Kulturgebieten oft ganz charakteristisch; die Höhen werden von
Kiefern- und Fichtenwäldern, die Täler von Äckern eingenom-
men, aber diese sind oft an ihren Rändern von Resten einer
früheren Laubwiesenformation eingerahmt.

Die Laubwiesen im östlichen Uppland zeigen eine sehr wech-
sehende Zusammensetzung. In den Scheeren und den nordöst-
lchen Teilen ist die Esche der wahre Charakterbaum, der in
weiten Gebieten völlig allgemein ist, nicht minder wichtig ist
der Haselstranche. Die Ulme und die Linde bilden oft schöne
Bestände, am meisten im südlichen Uppland, diese beiden haben
aber mehr eine beschränkttere Ausbreitung. Die Eiche (Quercus
robur) ist in vielen Laubwiesen der dominiierende Baum, wäh-
rrend der Ahorn nur in vereinzelten Individuen vorkommt, gleich
wie die selteneren Sorbus fennica und aucaria.

In der Kürze mag hier die Zusammensetzung einer Laub-
wiese in der Nähe von Skeppsdal im Kirchspiel Österäker ge-
schildert werden. Dieselbe verdient umso mehr Beachtung, als
sie nicht unwesentlich von denjenigen der näher studierten Ge-
gend auf den äußeren Scheeren abweicht und auch deshalb, weil hier für diese Untersuchung nicht unwichtige Beobachtungen gemacht worden sind.

Die Eiche (Quercus robur), die Linde und die Ulme (Ulmus montana) sind die vornehmsten Bäume, die hier und

![Map of Fig. 2. Verbreitung der Laubwälder in Uppland. Die mit schwarz bezeichneten Gebiete sind von Laubwäldern, hauptsächlich von Laubwiesen eingenommen. Die eingerahmten Partien sind vom Verf. näher untersucht worden. Die langgestreckte Insel, ein wenig östlich von S ist Skåbbholm. Maßstab 1:1 500 000.](image)

Gras-Vegetation; in erster Linie bemerkt man *Campanula latifolia*, die bis 2 m hoch im Juli ihre großen, lichtblauen Blüten entwickelt, bisweilen bei sehr kräftigen Individuen gegen 40 in ein und demselben Blütenstand. *Milium effusum, Geranium sylvaticum, Anthriscus silvestris, Dentaria bulbifera, Aegopodium podagraria*, alle in kräftigen Individuen, wetteifern mit der erwähnten stattlichen Pflanze in üppiger Entwicklung. Wo die Linde oder die Haselsträucher sich dichter zusammenschließen, wird der Schatten für diese Pflanzen zu stark. *Campanula, Anthris-

Fig. 3. Kartenskizze zeigend die Verbreitung von kalkhaltigem Moränkies (▲) und von Moränmergel (▲) in Uppland. (Nach Sveriges Geologiska undersökning. Ser. Ba. Nr. 5.) Masstab 1:2 000 000.

Übrigens verweise ich auf die Tafeln V und VII, wovon die erste einen Haselhain mit Espen wiedergibt, die zweite einen dicht geschlossenen Haselhain mit einer Untervegetation aus meist sterilen Kräutern und Gräsern.

Die wichtigsten biologischen und physiologischen Studien wurden in dieser Gegend auf der kleinen Insel Skabbholmen gemacht. Wenn auch das mittlere Gepräge des Klimas und der Vegetation auf die Resultate meiner Untersuchungen einwirken mußte, so bot doch diese Gegend große Vorteile für meine Forschungen. Auf den kleinen unbewohnten Inseln sind die Pflanzenformationen von den Menschen oft noch wenig beeinflußt worden, jedenfalls weniger als an den meisten Punkten des Binnenlandes, die Kräuter- und Gräservegetation ist sehr artenreich und oft in der schönsten Weise entwickelt: besonders dürften die Laubwiesen auf Skabbholmen zu den artenreichsten und schönsten Upplands in bezug auf die Kräuter- und Gräserflora gehören. Wenn es nun für den ungestörten Fortgang der Studien darauf ankam, ein kleineres Gebiet abzuseiden, so
konnte ich wohl keine bessere Grenze bekommen, als das Wasser; hier waren keine unwillkommenen Besuche von weidenden Tieren zu befürchten, und gegen mutwillige Menschen war die kleine Station besser geschützt als auf dem dichtbewohnten Binnenlande. Tatsächlich haben auch die Untersuchungen während der drei Sommer auf Skabbholmen, das, wie erwähnt, zur Stationsinsel aussersehen war, einen ganz ungestörten Verlauf nehmen können.

In dieser Gegend gewinnt die Vegetation neues Terrain hauptsächlich durch zwei Phänomene, nämlich durch die säkulare Hebung und durch die Verlandung an den Küsten; das Verlassen der Acker oder anderes Eingreifen der Menschen, das sonst eine große Rolle bei den Veränderungen der Vegetation spielt, scheint hier von geringerer Bedeutung zu sein.

In seichten Busen, wo die Wellen Lehm aufschwemmen, entwickelt sich die Vegetation gewöhnlich in folgender Weise: Scirpus palustris und Triglochin maritimum bilden kleine Bestände an der Wellengrenze, um Stämme derselben sammeln sich allmählich Sand, Lehm und organische Reste von wechselnder

1) Högbom. (I. pag. 48–52).

In der Hauptzüge vollzieht sich die Entwicklung auf einem aus Kies bestehenden Boden gleich der vorhergehenden. Zuerst bildet sich hier eine offene Vegetation aus verschiedenen halophilen Pflanzen, der erste Pionier ist *Deschampsia bottnica*, welche immer an der Wellengrenze wächst, schon bei schwachem Winde werden ihre festen, stark zusammengehobenen, aufrechten Blätter von Wasser umspült. Weiter bemerkt man hier:

\[
\begin{align*}
\text{Agrostis stolonifera} & \quad \text{Glaux maritima}, \\
\text{Aster tripolium} & \quad \text{Juncus Gerardi}, \\
\text{Erythraea vulgaris} & \quad \text{Plantago maritima}, \\
\text{Euphrasia tennis} & \quad \text{Scirpus palustris}.
\end{align*}
\]

nun oft Hippophaë rhamnoides auf und bildet bald ein graues, stachliges Dickicht, in dessen Schutz mehrere hohe Kräuter gediehen, und welches früher oder später von einem Erlenvegetationsbüscht ersetzt wird. Letzteres hegt nun in der Hauptsache dieselbe Flora, wie sie vorher geschildert worden ist, doch dürfte Rubus saxatilis und caesius, Cornus sanguinea hier eine bedeutendere Rolle spielen.

Diesen Entwicklungsverlauf, der an vielen, für die Verlandung besonders geeigneten Punkten studiert worden ist, nimmt auch allem Anschein nach die Vegetation, wenn bei der sächlichen Hebung neues Terrain gewonnen wird; in jetzigen Zeiten geht diese Entwicklung besonders langsam vor sich, so war es aber auch früher, wo die Hebung bedeutend größer war als jetzt, der Vorgang dürfte da derselbe gewesen sein.

In etwas feuchten, schwach abschüssigen Lagen entwickelt sich aus dem Ufervegetationsbüscht gewöhnlich ein Eschenhain. Dieser Pflanzenverein findet sich auf Skabholmen an mehreren Punkten besonders schön entwickelt und verdient hier eine besondere Beschreibung. Der herrschende Baum ist die Esche, die zusammen mit der Erle einen dichten Niederwald bildet. Außer diesen beiden kommen derselben noch viele andere Bäume vor; auf Skabholmen sind folgende beobachtet worden:

Acer platanoides (einzeln).
Alnus glutinosa " boëma (einzeln)
Betula verrucosa (einzeln)
Picea excelsa (einzeln)

Unter dem Laubdach des Niederwaldes wächst eine besonders reiche Strauchvegetation, von welcher einzelne Individuen beinahe die Höhe des Niederwaldes erreichen; folgende wurden auf Skabholmen notiert:

gemein:
Lonicera xylosteum.
Prunus padus.
zerstreut:
Berberis vulgaris.

einzeln:
Juniperus communis.
Rhamnus cathartica.
Ribes nigrum.
Rosa canina, v. glaucescens.
" " v. laetica.

Zusammen mit diesen Sträuchern wachsen durch den Schatten verkümmernde Individuen von Fraxinus und Sorbus aucuparia: die Blätter an den noch lebenden Zweigen der absterbenden Bäume sind ungewöhnlich groß und breit, der Dickenzuwachs der alten, schmalen Stämme unbedeutend, viele Individuen sind schon tot und die übrigen scheinen früher oder später abzusterben.

Die epiphytische Vegetation ist gewöhnlich nur schwach entwickelt, in Eschenhainen auf der östlichen Seite von Skabbholmen wurde folgende Flechtenvegetation aufgezeichnet:

reichlich:
Acrocordia gemmata (Ach.) Mass. | Parmelia saxatilis (L.) Fr.
Parmelia olivacea (L.) Ach.

1) Diese Eschenhaine zeigen, nach den Aufzeichnungen von Beck (I pag. 51) zu urteilen, eine große Ähnlichkeit mit Eschenwäldern in Nieder-Österreich.
zerstreut:
Physcia ciliaris (L.)

einzeln:
Eremita pennastri (L.) Ach.
Leucanora subfusca (L.)
Physcia caesia (Hoffm.)

Außer der Esche kommen auf solchem Standorte dieselben Baumarten vor wie in dem vorher geschilderten Pflanzenverein: *Alnus glutinosa × incana* und *Taxis baccata* habe ich zwar nicht beobachtet, die Birke aber ist allgemeiner, die Espe ist ganz gewöhnlich und oft findet man die Eiche (*Quercus robur*).

Eine Beschreibung einer solchen Formation auf Kapellskär, ungefähr eine Meile südlich von Skabholmen, will ich nun in folgendem machen:

Corylus avellana ist die am meisten hervortretende Pflanze; die Sträucher sind 3—5 m hoch und stehen in kleinen Gruppen zusammen. In dem dichten Gebüsch der Haselsträucher kommen folgende Pflanzen mehr oder minder spärlich vor:

![Image](image_url)

Fig. 4. Vegetationsbild aus Skabbholmen. Lückiger Eschenhain, im Vordergrund eine Geranium silvaticum-Wiese. Die weißen Blüten gehören Ger. silvaticum.

Zerstreut:

Juniperus communis.

einzeln:

Crateagus monogyna.

Lonicera xylosteum.

Prunus padus.

Ribes alpinum.

Prunus spinosa.

Pyrus malus.

Viburnum opulus.

Über das Gebüsch aus diesen Sträuchern erhebt sich ein lichter Niederwald aus zerstreuten Bäumen bestehend, nämlich:

Fraxinus excelsior.

Picea excelsa.

Populus tremula.

Sorbus aucuparia.

Folgende Pflanzen wurden als unter den Haselsträuchern wachsend aufgezeichnet:

reichlich:

Anemone hepatica.

Anemone nemorosa.

ziemlich reichlich, hier und da reichlich:

Allium ursinum.

Centauria jacea.

Stachys silvatica.

Vicia siliqua.

spärlich:

Arachneurae clavata.

Campaedia trachelina.

Dactylis glomerata.

Deudalia labifera.

Frangaria vesca.

Geranium silvaticum.

Geranium sanguineum.

Melica uniflora.

Melampyrum silvaticum.

reichlich:

Armeria maritima.

Campanula persicifolia.

Galium boreale.

Geranium urbanum.

Geranium virgatum.

Hypericum quadrangulum.

Laserpitium latifolium.

Laurelium pratense.

Lichter orada.

Luzula pilosa.

Melampyrum nemorosum.

Milium effusum.

Orobanche verna.

Rubus saxatilis.

Veronica chamaedrys.

Viele von diesen Pflanzen kommen nur steril vor, die mit einem * bezeichneten sind in der Regel steril; unter den übrigen sind oft die sterilnen Individuen an Zahl überwiegend.

Zwischen den Baumgruppen, wo das Licht freien Zutritt hat, ist die Vegetation wesentlich hiervon verschieden, wenn
3.30 Hesselman, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen.

auch mehrere Arten, die unter den Haselsträuchern gut gediehen, hier noch vorkommen. Eine Bodenschicht aus Moosen ist schön entwickelt, unter diesen sind die wichtigsten Hylocomium splendens Br. et Sch., squarrosum Br. et Sch. und triquetrum Br. et Sch., Hypnum parvatum L. und plumosum Sw., Cladinae dendroides WM. Die Gras- und Krautflora ist besonders reich an Arten. Folgende wurden beobachtet:

ziemlich reich bis sehr reichlich:

Achillea millefolium.
Achillea vulgaris.
Anemone nemorosa.
Centaurae jacea.
Chrysanthemum leucanthemum!
Heracleum sibiricum.
Helianthemum chamaecistus.
Linum catharticum!

zerstreut:

Agricolis vulgaris.
Aegopodium podagraria.
Anthemum odoratum!
Arenaria epiroia!
Carrce capillaris!
Carrce muricata!
Festuca arsonia.
Fragaria vesca.
Galium boreale.
Geranium sylvaticum.
Hypericum quadrangulare.

spärlich:

Anemone hepatica.
Briza media!
Carrce glauca!
- palettes!
Gnmm viride.
Hieracium pilosella!
Lisera orata.
Melampyrum nemorosum.

einzeln:

Botrychium lunaria Sw.!
Campanula persicifolia.
- racemosa.
Deschampsia caespitosa!
Hieracium dubium!
- vulgarum.

Orchis mascula.
Orchis sambucina!
Convolvulus majalis.
Galium verum!
Geranium sanguineum.
Plantago lanceolata.
Potentilla erecta!
Primula officinalis.

Hypochaeris maculata!
Laserpestis latifolium.
Luzula pilosa.
- campesi.
Melampyrum nemorosa.
Polygonum riepinum!
Potentilla rerna!
Ranunculus acer.
- polyanthemos.
Spiraea filipendula!
Sesleria coerules!
Trichera arvensis!
Trifolium pratense!

Polygala vulgaris!
Primula vulgaris.
Rhamnus minor.
Rumex acetosa.
Veronica chamaedrys.
- officinalis.
Viola canina.

Viele oder sogar die meisten Pflanzen, die die Vegetation unter den Haselsträuchern bilden, trifft man an den sonnenoffenen Teilen wieder, einige, besonders verschiedene Gräser, die für die Wiesenvegetation ganz und gar charakteristisch sind, treten hier hinzu. Arten, die keine Schattenformen bilden und bloß in den lichtoffenen Teilen vorkommen, sind mit einem ! ausgezeichnet.

Die Pflanzen an den verschiedenen Standorten zeigen immer eine Veränderung in der Exposition der Blattscheiben gegen das
Licht. Die flächen, ebenen, horizontal ausgebreiteten Assimilationsorgane im Schatten der Haselsträucher verändern an den mehr sonnenoffenen Partien ihr Aussehen sehr; sie werden wellenförmig gebogen, buckelig und zuweilen tütchenförmig zusammengezogen, so bei *Convalaria majalis*. Die horizontal ausgebreiteten Blätter von *Geranium sanguinum* werden durch Biegung des obersten Teiles des Blattstieles in die Vertikallinie gestellt, die Blätter von *Mertensia perennis* werden etwas zusammengezogen und gerade aufgerichtet. Es sind diese Pflanzen nach der Wiesnerschen Terminologie mit (Wiesner VIII) photometrischen Blättern versehen, in der Sonne panphotometrisch, im Schatten euphotometrisch. Es gibt in diesen Laubwiesen viele Pflanzen, die man sonst wohl selten an sonnenoffenen Plätzen antrifft, die hier jedoch sehr leicht an offeneren Stellen fortkommen und mehr oder minder gut gedeihen. Unter diesen verdienen folgende hervorgehoben zu werden:

- *Oenanthe balfoora*
- *Mertensia perennis*
- *Milium effusum*
- *Paris quadrifolia*
- *Polygonatum multiflorum*

Gewöhnlich erreichen sie an solchen Plätzen ihre völlige Entwicklung, weisen Blüten und reife Früchte auf, in den warmen, heißen Sommern 1899 und 1901 aber vertrockneten sie anfangs Juli früher als die im Schatten lebenden, ohne Frucht ausgebildet zu haben. Ähnlich verhalten sich auch einige andere, die im mittleren Schweden gewöhnlich an schattigen oder etwas feuchten Plätzen gedeihen, welche aber weiter im Norden gern an sonnenoffenen und trocknen Standorten auftreten. Unter diesen sind folgende zu nennen:

- *Convalaria majalis*
- *Epipactis nigra*
- *Majanthemum bifolium*
- *Myrtillus uliginosus*
- *Trientalis europaea*

Auf diese Verhältnisse will ich in einem folgenden Kapitel näher eingehen.

Auf gutem Boden erreicht die Schattenflora unter den Bäumen eine schöne Entwicklung durch das massenhafte Auftreten von *Allium ursinum*, *Paris quadrifolia*, *Polygonatum multiflorum*, *Milium effusum*, *Orbonis versus* u. a.; auf mageren Bodenarten besteht sie zum größten Teil aus Schattenformen von sonst in der Sonne gut gedeihenden Pflanzen (siehe übrigens Tafel V—VII).

Diese Art von Laubwiesen, mit reichlichem *Corylus avellana* im Unterholz und einem Niederwald aus ziemlich zerstreut

Die Krautflora ist arm, jedoch ziemlich artenreich. An einer derartigen Lokalität wurden z. B. folgende Pflanzen aufgezeichnet:

<table>
<thead>
<tr>
<th>Convolvulus majalis.</th>
<th>Myrtillus nigra.</th>
</tr>
</thead>
<tbody>
<tr>
<td>einzeln:</td>
<td>Polygala vulgaris.</td>
</tr>
<tr>
<td>Anthoxanthum odoratum.</td>
<td>Polygonatum officinale.</td>
</tr>
<tr>
<td>Arctostaphylos pfaubescens.</td>
<td>Polygala filix mas Roth.</td>
</tr>
<tr>
<td>Festuca ovina.</td>
<td>Polemonium erectum.</td>
</tr>
<tr>
<td>Geranium sanguineum.</td>
<td>Silene nutans.</td>
</tr>
<tr>
<td>Helianthemum chamissonis.</td>
<td>Tricholomus europaeus.</td>
</tr>
<tr>
<td>Las witherii latifolium.</td>
<td>Trifolium flexuosum.</td>
</tr>
<tr>
<td>Melampyrum nemorum.</td>
<td>Vaccinium vitis idaea.</td>
</tr>
<tr>
<td>— pratense.</td>
<td>Veronica chamaedrys.</td>
</tr>
<tr>
<td>Melica nutans.</td>
<td>Poa pratensis.</td>
</tr>
</tbody>
</table>

Dieselben Verhältnisse findet man an solchen Lokalitäten oft wieder und so weit sich meine Untersuchungen erstrecken, verbreitet sich hier die Heideformation auf Kosten der Laubwiese, hierbei scheint auch das Weiden des Viehes eine große Rolle zu spielen. Eine andere Auffassung legt O. Bergroth (d pag. 38) betreffs gleichartiger Formationen in den Scheeren zwischen Åland und Åbo; er nimmt an, daß sich die Laubwiese allmählich über den von der Heideformation bewachsenen Boden ausbreitet, was mir etwas unwahrscheinlich erscheint. Die von ihm (pag. 35—36) näher besprochenen Eichen dürften wohl kaum als Pioniere der Laubwiesen angesehen werden können, eher sind
sie als Relikten zu betrachten, wenn sie nicht etwa gar nur durch einen Zufall da gewachsen sind.

Da, wo der Boden sehr steinig und trocken wird, erhält die Vegetation ein völlig abweichendes Aussehen, obgleich die meisten Arten der Laubwiese auch hier auftreten. Statt der Art Cory-

cclus arvellana spielt hier Juniperus communis die Hauptrolle. An den kleinen, sonnigen, windgeschützten Abhängen der Gebirge der Scheeren erreicht der Wacholder oft eine bedeutende Höhe, zwei bis drei Meter, zuweilen noch mehr. Zusammen mit Juri-

Das Dickicht besteht aus folgenden Arten:

reicliclc:

Juniperus communis.

spärlich:

Lonicera xylosteum.
Ribes alpinum.

einzeln:

Cotoneaster lantcrginicus.
Daphne mezereum.

Über das Gebüsch erheben sich einige Bäume, nämlich Picea excelsa, Pinus silvestris, Sorbus aucuparia, Betula alba und niedrigere Exemplare von Fraxinus excelsior.

Die Gras- und Krautvegetation bestand aus folgenden Arten:

reicliclc:

Convallaria majalis.
Geranium sanguineum.

ziemlich reicliclc:

Melampyrum nemorosum.
Myrtillus nigra.

zerstreut:

Achillea milfeefolium.
Agrostis caulis.
Anthoxanthum odorum.
Briza media.
Calluna vulgaris.
Deschampsia flexuosa.

spärlich:

Avenastrum pratense.
Cinopodium vulgare.
Dactylis glomerata.
Dentaria bulbifera.
Fragaria vesca.
Hypericum quadrangulatum.
Laserpitium latifolium.
Linaria vulgaris.
Lucula pilosa.
Origanum vulgare.

Rosa glauca v. lateralis Mattss.
Sorbus aucuparia.

Prunus padus.
Rhamnus cathartica.

Galium boreale.
... verum.
Linnéa cathartica.
Spiraea filipendula.
Veronica chamadrys.

Pimpinella saxifraga.
Plantago lanceolata.
Poa pratensis.
Polygonatum officinale.
Primula officinalis.
Sedum maximun.
Solidago virgaurea.
Veronica officinalis.
Vicia silvatica.
Hesselman, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen.

334

einzelnu:

Agrimonia eupatoria.
Artemisia elatius.
Calamagrostis epigejos.
Comandra rotundifolia.
Carex maricata.
Cerastium vulgare.
Euphorbia stricta.
Festuca arundinacea.
Geranium silvaticum.
Hieracium pilosella.
Hypericum perforatum.

Hypochaeris maculata.
Lathyrus pratensis.
Melica nutans.
Milium effusum.
Polygonatum officinale.
Potentilla flexuosa Roth.
Potentilla erecta.
Silene nutans.
Vaccinium vitis idaea.
Viola cracca.
Viscaria viscosa.

Der Boden wird von einem ziemlich dichten Moosteppich bedeckt, bestehend hauptsächlich aus den Arten:

Antimonium palustre Schw.
Brachylychnium alboans Br. et Sch.
Bryum roseum Schreb.
Hylocomium triquetrum Br. et Sch.
Hypnum parietinum L.
Molinia persicataum H.

Dieranum scoparium H.
Hylocomium splendens Br. et Sch.

N blyealium recognitum (Hedw.).
Cladoniae.

Pelligera canina (L.).

Auf den Zweigen des Wacholders war die Epiphytenvegetation ziemlich reich entwickelt, obgleich nicht reich an Arten: die wichtigsten waren:

Cetraria juniperina (L).

Parmelia ambigua Ach.

" physodes. (L).

" olivacea. (L).

In guten Lagen schließen sich die Wacholder dicht zusammen und bilden ein fast unendlich langes Dickicht, durch das Beschatten sterben viele Zweige und Zweigsysteme ganz ab, und werden dann mit Flechten eingehüllt, hauptsächlich:

Alectoria jubata (L) parietina (Aeh.).
Cetraria juniperina (L).
Erenea prunastri (L).
Parmelia olivacea (L).

Usnea barbata (L).

Die untersten Teile der sehr groben Stämme waren mit einer ziemlich reichen Moos- und Flechtenvegetation bedeckt.

Chamaecyparis.

Hylocomium splendens Br. et Sch.

Idesia myrtifolia Brich.

Pilulidium ciliare N. v. Es.
Radula complanata N. v. Es.

Der Boden wird hauptsächlich von vermodernden Nadeln und Zweigen des Wacholders bedeckt. Moose sind hier sehr spärlich. Zu nennen ist nur Bryum roseum Schreb. Im Schatten obengenannter, dichtstehender Sträucher wuchs eine ausgeprägte Humusflora, aus:

Mercerariales perennis (reichlich).

Deschampsia flexuosa (einzelnu).

Milium effusum (reichlich).

Arctium trierinae (").

Melica nutans (spärlich).

Polygonatum officinale (").

Luzula pilosa (").

Rubus idaeus (").

Concardaria majalis (einzelnu).

Viola riviniana (").

Nach den Beschreibungen Hult’s zu urteilen (I pag. 218 –221), sind diese Wacholderformationen physiognomisch mit
den Dornstrauchdickichten Südschwedens sehr nahe verwandt. Letztere bestehen aus mehreren dornigen Sträuchern, wie Crataegus-Arten, Prunus spinosa, Rubi fruticosi, Rosae, in ihrem Schutz wächst eine reiche Schattenflora, ganz wie in den hier

Fig. 5. Wacholdergebüsche auf Skabbholmen. Über dem Gebüsche erheben sich einige Eschen. Im Vordergründe eine Wiese mit blühendem Geranium sanguineum. Aug. 1902. Auct. foto.
beschriebenen Wacholderformationen. Wie diese stehen sie mit gewissen Formen der Laubwiese in sehr naher Beziehung.

In feuchten Lagen, wo das Wasser von umgebenden Gebirgen oder von höher liegenden Kieslagern herumsickert, und in kleinen flachen Einsenkungen im Boden bekommt die wiesenartige Vegetation zwischen den Baumgruppen ein abweichendes Aussehen. Die zahlreichen Kräuter treten hier zurück, anstatt ihrer nehmen einige Gräser an Zahl bedeutend zu, unter ihnen sind *Sesleria coerulea*, *Molinia coerulea*, *Agrostis canina*, *Carex panicca* die wichtigsten.

Die Kraut- und Grasvegetation weist folgende Arten auf:

- sehr reichlich:
 - *Carex capillaris*, *Sesleria coerulea*.
 - *Carex panicca*.

- ziemlich reichlich bis reichlich:
 - *Agrostis canina*.
 - *Molinia coerulea*.

- spärlich:
 - *Achillea millefolium*.
 - *Convolvulus majalis*.
 - *Carex pallescens*.
 - *Polygala amarella*.
 - *Carex stricta*.
 - *Polygala vulgaris*.
 - *Centauraea vaccaria*.
 - *Potentilla erecta*.
 - *Festuca ovina*.
 - *Potentilla erecta*.

- einzel:
 - *Galium boreale*.
 - *Primula farinosa*.
 - *Myrtillus uliginosus*.
 - *Rubus saxatilis*.
 - *Geranium rivale*.
 - *Spiraea ulmaria*.
 - *Linum catharticum*.
 - *Selaginella spinulosa* A. Br.
 - *Centaurea jacula*.
 - *Vicia cracca*.
 - *Ranunculus anisocoma*.

Der Boden war teils mit den vermodernden Blättern von *Sesleria* und den *Carex*-Arten, teils mit einer Moosdecke gut bedeckt, aus:

- *Acrocladium cuspidatum* L.
- *Amblystegium alatum* (L).
- *Climacium dendroides* WM.
- *Amblystegium aduncum* (L).
- *Hylocomium triquetrum* Br. et Sch.
- *Cernicosum* (Lindb.).

In den flachen Depressionen entwickeln sich oft die *Sesleria*-wiesen aus sehr hydrophilen Formationen; wo sich das Wasser bei regnerischem Wetter noch ansammelt, findet sich Rasen aus *Carex*-Arten bestehend; auch als Beispiel einer solchen Formation wird folgende angeführt:

- sehr reichlich:
 - *Carex stricta*, *Carex vesicaria*.
reichlich:
Mentha arvensis.

spärlich:
Caltha palustris.
Galium palustr.
Lythrum salicaria.

Xanthonia thyrsiflora.
Polygornum amphibium.
Potentilla anserina.

einzeln:
Lycopus europaeus.

Arten gemeinsam sind, so scheint es mir für diese Untersuchung am zweckmäßigsten zu sein, alle diese Varianten unter einem gemeinsamen Namen zusammenzufassen. Es mag die Aufgabe einer physiognomischen Schilderung der schwedischen Laubwiesen sein, hier besondere Pflanzenvereine mit größerer geographischer Ausbreitung abzugrenzen.

Bei der nun folgenden Einteilung habe ich in erster Linie die ökologischen Verhältnisse in Betracht gezogen und die typischen verschiedenen Standorte der Laubwiesen zu unterscheiden versucht; verschiedene kleinere Pflanzenvereine, die durch ihre Entwicklung historisch nahe miteinander verknüpft sind, sind aus praktischen Gründen für diese Untersuchung getrennt worden.

1. Der Eschenhain. Charakterpflanzen: Die Esche, *Mercurialis perennis, Allium ursinum*. In dieser Form nähert sich die Laubwiese der Vegetation der Haintälchen (siehe Fig. 4 und Tafel IV).

3. Das Wacholdergebüsch. Kommt an sonnenoffenen, steinigen, trockenen Abhängen vor. Schattenpflanzen sind dieselben wie in der eigentlichen Laubwiese, oft sehr ausgeprägte Humuspflanzen wie *Mercurialis perennis, Milium effusum* u. a. (Fig. 5).

Hinsichtlich der Untervegetation den vorhergehenden Wiesen nahestehend sind die Fichtenwälder und die kleinen Fichtenbestände, die hier und da auf der Laubwiese emporwachsen.

Die von Sernander und Nilsson geschilderten Verhältnisse findet man in den Laubwiesen der Scheeren an vielen Punkten wieder: wo die Gras- und Krautvegetation durch starkes Weiden dünner geworden ist und die Moose sich ausgebreitet haben, tritt die Fichte als ein fremdes Element in die Formation ein, und allem Anschein nach geht die Entwicklung in der Richtung, daß ein Nadelwald zuletzt die Laubwiesenvegetation verdrängt. Die Beschaffenheit des Bodens ist dabei auch von Bedeutung, denn auf magerem scheint das Vordringen der Fichte schneller als auf gutem, nahrungsreichem vor sich zu gehen. Wie Sernander angibt, kann die Fichte auch in den alten Haselstraußbeständern ein geeignetes Keimbett finden, wobei jedoch die Entwicklung bedeutend langsamer vorschreitet.

In der Physiognomie vieler Laubwiesen tritt der stetige Wechsel von offenen Wiesen und kleinen Beständen aus Laubbäumen und Sträuchern sehr hervor, was auch diesem Pflanzenverein den Namen gegeben hat. In dieser Hinsicht hat die Laubwiese eine große Ähnlichkeit mit der Parklandschaft in Ostsbirien, im Amurland, auf Sachalin und auf Kamtschatka; viele photographische Aufnahmen und Vegetationsansichten von diesen Gegenden könnten ganz gut Laubwiesen vorstellen. Die

Die Frage über das ursprüngliche Aussehen der Laubwiesen, ebenso auch viele andere Fragen betreffs der europäischen, von der Kultur stark beeinflußten Vegetation dürfte dadurch am besten zur Lösung kommen, daß man einige geeignete Pflanzenformationen sich auf längere Zeit selbst überließ, um dabei ihre Entwicklung genau zu studieren.

Zuletzt wird hier eine kurze Beschreibung über die Verteilung der Pflanzenformationen auf der Stationsinsel Skabbholmen angebracht sein. Die Insel ist ziemlich lang, mit der größten Streckung S-N., der Abstand vom Süd- bis zum Nordende beläuft sich auf 1100 m. und die größte Breite auf 275 m; der ganze Flächeninhalt beträgt ungefähr 21 Hektar. Der höchste Punkt der Insel liegt im Südosten und zwar nach einer Messung mittels Elfving's Spiegel 7 m über dem Meeresspiegel. Am Ufer tritt an einigen Punkten der feste Berggrund hervor, sonst ist alles von Kiesablagerungen bedeckt, die wiederum in einigen Senkungen von Lehm und feinem Sand überlagert sind. Der Kies besteht größtenteils aus Sandsteinstücken, die mit dem Eis von Gänstrikland hierhergetragen sind und zuweilen nicht unbeträchtlich viel Feldspat enthalten, in einigen von A. Hamborg gültigst mikroskopisch untersuchten Proben fanden sich 10 bis 20 Prozent Kalifeldspat; gegen 50 bis 60 Prozent vom Kies dürfte aus Sandsteinstücken bestehen. Wichtig ist das Vorkommen von Kalkgesteinen, die jedoch mehr zerstreut im Kies liegen, sodaß ihr Kalkgehalt mehr unbeträchtlich ist; trotz vieler Versuche ist nur ein einzigesmal ein schwaches Aufbrausen beim Probieren mit Salzsäure wahrgenommen worden, gleichwohl ist die Insel überaus reich an Orchideen, besonders an Orchis mascula und sambucina 1)

1) Nach Hilgard (I. p. 186—187) zeigt Sandboden schon bei 0,15 Prz. Kalkwuchs, leichter Lehmboden etwa bei 0,24 Prz. und überhaupt jeder
Im übrigen besteht der Kies aus anderen, für die Vegetation mehr oder weniger wichtigen Gesteinen, nämlich Granit, Gneis, Pegmatit, Diorit und Kwartsit.

Es kommt auf der Insel eine beträchtliche Reihe von Pflanzenvereinigen vor, über die Ausbreitung derselben gibt die beigegebene Skizze eine Vorstellung.

1. Strandwiesen auf Lehnm- und Dyboden.
2. Ufervegetation auf Kies.
5. Erlengebüsch (p. 324—325).
10. Trockene Wiesen.
12. Fichtenbestände.
Viele Kräuter der Laubwiesen. Pyrola uniflora.

Boden, dessen Kalkgehalt über 0,75 Prz. geht, zeigt Kalkwuchs, und wenn der Gehalt auf 2,0 Prz. steigt, scheint das Maximum der speziellen Wirkung erreicht zu sein. Ein Gehalt von 2 Prz. bewirkt Aufbrausen beim Zusatz von Säuren.

Acer platanoides L. 6.
Achilles millefolium L. 6, 7, 8, 9, 10, 11, 13.
Arctous spicata L. 6, 7, 12.
Adula moschatellifolia L. 7.
Agrimonia eupatoria L. 13.
Agrostis canina L. 9, 15.
- stolonifera L. 1.
- v. maritimum (Lam.) Murr. 2, 14.
vulgaris With. 8, 9, 11, 13.
Alchemilla vulgaris L.
- * filicaulis (Bus.) 9.
- * pastoralis (Bus.) 8, 10, 13.
- * pubescens (Lam.) 10, 11.
Allium ursinum L. 8, 11.
- schoenoprasum L. 14.
- scorodoprasum L. 6.
- ursinum L. 6, 7.
Alcmis glutinosa (L.) Gärtn. 5, 6, 11, 15.
Alcmis glutinosa var. incana (L.) Willd. 6.
Alpepermum pratensis L. 1.
- centricus (Pers.) 1, 2.
Angelica officinalis (Hoffm.) f. littoralis (Fr.) 2.
Angelica silvestris L. 5, 9.
- v. major Hhn. 5.
Aveneone brepatica L. 6, 7, 8, 11, 12, 13.
Aveneone nevrosa L. 6, 7, 8, 12, 13.
Antennaria dioica (L.) Gärtn. 8, 9, 13.
- thunbergii (L.) Hoffm. 8.
- thunbergii (L.) Hoffm. 6, 7.
Aranthus hirsuta (L.) Scop. 8.
- hispida L. 8.
Arvenaria trinervia L. 6, 12, 13.
Artemisia vulgaris L. 2.
Aster tripolium L. 1, 2.
Asplenium septentrionale Hoffm. 14.
- fìlici foemina Bernh. 7.
Avenastrum pratense (L.) Jessen 8, 10, 11, 13.
- Avenastrum pubescens (Huds.) Jessen 8.
Baldingera arundinacea (L.) Dum. 2.
Berberis vulgaris L. 6, 7, 11.
Brullia odorata Bechst. 11, 13.
Calluna vulgaris Hoff. 6, 11.
Bostrychia linnaria Sw. 8.
Brachypodium pinnatum (L.) PB. 6.
Briza media L. 8, 9, 10, 11, 13.
Calamagrostis arundinacea (L.) Roth 6.
- epigejos (L.) Roth 6, 8, 9, 11, 13.
Calamagrostis neglecta Ehrh. 1, 2, 15.
Calamagrostis linnaria L. 9, 13, 14.
Caltha palustris L. 15.
Campastrula glomerata L. 6.
- persicifolia L. 7, 8, 13.
- cotonifolia L. 8, 10, 11, 13.
Cardamine hirsuta L. 3.
- pratensis L. 9.
Carex canescens L. 14.
- capillaris L. 9.
- caespitosa L. 2, 15.
- digitata L. 8, 13.
- dioica L. 9.
- distans L. 2.
- disticha L. 15.
- echinata Murr. 6.
- flava L. 9.
- flava L. × Oederi (Ehrh.) Hoffm. 15.
Carex glauca Murr. 8, 9.

" Goodenoughii J. Gay. 9, 15.

" korshuchiana Hoppe 8.

" leporina L. 9.

" muriicata L. 8, 13.

" Oederi (Ehrh.) Hoffm. 15.

" pallescens L. 9, 8.

" panicca L. 9, 15.

" pulcherrima L. 8.

" pulicaris L. 9.

" stricta Good 15.

" strictissima Good. 15.

" vesicaria L. 15.

Centauraea jacea L. 6, 10, 11.

Cerastium vulgare Hn. 8, 13.

Chrysanthemum leucanthemum L. 8.

Cirsium arvense (L.) Scop. 3, 4.

" heterophyllum (L.) All. 7, 8, 9, 13.

Cirsium lanerolatum (L.) Scop. 4, 12.

" palustre (L.) Scop. 15.

Clinopodium vulgare L. 8, 11, 13.

Cnomaus palustre L. 15.

Convolvulus majalis L. 6, 7, 8, 11, 12, 13.

Corydalis intermedia (L.) P. M. E. 6, 7.

Corydalis laza Fr. 6, 11.

Corydalis avellana L. 7, 11.

Cotononset integericinnus Medik. 11,13.

Cvitaegus monogyra Jacq. 6.

Dactylis glomerata L. 6, 7, 8, 10, 11, 13.

Daphne mezereum L. 6, 7, 8, 11, 12, 13.

Dentaria bulbifera L. 7, 8, 12, 13.

Deschampsia bonthina (Wg.) Trin. 2.

" caespitosa (L.) P. B. 2.

Deschampsia caespitosa (L.) P. B. 9, 11.

" flexuosa (L.) Trin. 7, 8, 13.

Dianthus deltoides L. 8, 10, 11.

Draba vulgaris L. 3.

" verna L. 14.

Elymus arenarius L. 3.

Epilobium angustifolium L. 13.

" palustre L. 15.

Euphorbiaceum arvense 15.

" silvaticum L. 6.

Eriophorum vaginatum L. 15.

Erythraea hiemalis L. 3.

Erythraea pulchella Fr. 1, 2.

" vulgaris (Rafn.) Wild. 1, 2.

Euphrasia bohica Kihln. 2.

" brevipila Burn. et Grenli.

9, 11.

Euphrasia cartua Fr. 2.

" stricta Host. 8, 11, 13.

Espharia tenus (Brenn.) Wittst. 2, 8.

" brevripila × cartua.

" brevripila × stricta.

Festuca arundinacea Schreb. 2, 5, 8.

" elatior L. 8.

" ovina L. 8, 9, 11, 13.

" rubra L. 9, 10, 14.

" × f. armeria Osb. 2.

Fragaria vesca L. 6, 7, 8, 11, 13.

Fraxinus excelsior L. 5, 6, 7, 11.

Gagea latea (L.) Ker. 6, 7, 8, 11.

Galanthus nivalis L. 4, 12.

Galium boreale L. 5, 6, 8, 9, 10, 11, 13.

Galium mollugo L. 8.

" mollugo × verum 8.

" palustre L. 9, 15.

" alpinumum L. 9.

" verum L. 6, 8, 9, 10, 11, 13.

Gentiana acaulum L. × ligulata C. A. Ag. 8.

Gentiana × ligulata × × × a succiss 8.

" campesiris L. × succiss Mrb. 8, 10, 13.

Gentiana alpinumosa Wild. 2.

Germium lividum L. 14.

" posticum L. 14.

" robertianum L. 6.

" sempervirens L. 6, 7, 8, 9, 10, 11, 12, 13.

" silicim L. 5, 6, 7, 8, 9, 10, 11, 13.

Gewu rivale L. 5, 7, 8, 9, 11, 13.

" arbnamum L. 6.

Glacie maritima L. 1, 2.

Glechoma hederacea L. 6, 8.

Glycera maritima (Huds.) Wahlb. 1, 2.

Gymnadenia conopsea (L.) R. Br. 9.

Helianthemum chamamasas Mill. 13.

Heracleum × sibiricum L. 6, 8, 11, 13.

" × × × angustifolium Jacq. 8.

Hieracium pilosella L. 8, 9, 10, 11, 13.

" rigidum Hn. 8.

" umbellatum L. 10, 11.

Hiercholod osorata (L.) Wg. 2, 15.

Hippophae × chamaeoides L. 5.

Hippuris vulgaris L. 15.

" × × × maritima Hellen. 1.

Hypericum perforatum L. 13.

" quadrangulum L. 8, 11, 12, 13.

Hypochoeris maculata L. 8, 11, 13.

Juncus × butsinus L. 3.

" compressus Jacq. 14.

Juncus Gerardi 2.
 lamprocarpus Ehrh. 15.
Juniperus communis L. 6, 7, 9, 11, 13.
Laserpitium latifolium L. 7, 8, 11, 13.
Lathyrus paluster L. 2, 13.
 pratensis L. 5, 7, 8, 9, 10, 11, 13.
Leontodon autumnalis L. 2, 14.
Lunaria vulgaris (L.) Mill. 11, 13.
Lunaria catharticum L. 9, 10, 13.
Listera ovata (L.) R. Br. 8, 9.
Lithospermum arvense L. 3.
Lonicera xylosteum L. 6, 7, 11, 12, 13.
Luzula campestris (L.) DC. 8, 9.
 multiflora (Ehrh.) Hoffm. 9.
 pilosa (L.) Willd. 6, 7, 8, 9, 11, 12, 13.
Lychais flos cuci L. 15.
Lycopodium annotinum L. 13.
 selago L. 13.
Lycopodium europaeus L. 15.
Lysimachia vulgaris L. 15.
Lythrum salicaria L. 2, 15.
Majoanthemum bifolium (L.) Schmidt 6, 7, 8, 13.
Matricaria inodora L. * maritima L. 14.
Melampyrum nemorosum L. 6, 7, 8, 11, 12, 13.
 pratense L. 6, 11, 13.
 silvaticum L. 7, 11.
Melandrium rubrum (Weig.) Gaceke 6, 8.
Melica nutans L. 7, 11, 13.
Mentha arvensis L. 9, 15.
Menyanthes trifoliata L. 15.
Mercierialis perennis L. 6, 7, 8, 11, 13.
Millium effusum L. 6, 7, 8, 11, 13.
Molinia coerulea (L.) Mönch 9, 15.
Myosotis collina Hoffm. 3.
 palustris L. 2, 15.
Myrtillus nigra Gilib. 7, 8, 11, 12, 13.
 villosa (L.) Drej. 9, 14.
Nardus stricta L. 8, 9, 10, 15.
Navarberga thyrsiflora (L.) Reichb. 15.
Odontites simplex Krok. 2.
Opheglonosum vulgarum L. 1. 1, 2.
Orchis mascula L. 8.
 masca L. 6, 8.
 saundersia L. 8, 10, 13.
Origanum vulgare L. 6, 8, 11, 13.
Oxalis acetosella L. 6, 7.
Paris quadrifolia L. 6, 7, 8, 12.
Parnassia palustris L. 2, 15.
Petecularis palustris L. 15.
Pheugoperis dryopteris Fée. 6.
Pideun pratense L. 8.
Philomides commicus Trim. 2, 15.
Picea excelsa (Lam.) Lk. 6, 7, 11, 12, 13.
Pimpinella saxifraga L. 8, 11, 12, 13.
Pinus silvestris L. 12, 13.
Plantago lanceolata L. 8, 9, 10, 13.
 major L. 2.
 maritima L. 2.
 media L. 8.
Platanthera bifolia (L.) Rechb. 8.
 montana (Schmidt) Rechb.
 fil. 8, 13.
Poa pratensis L. 8, 9, 10, 11, 13.
 nemoralis L. 6, 7, 11, 13.
Polygala vulgaris L. 9, 11, 13.
 amarella Crantz 9.
Polygontum multiflorum (L.) All. 6, 7, 11.
 officinale All. 8, 11, 13.
Polygontum amphibiunum L. 15.
 aciculare L. 3.
 virgatum L. 8, 11.
Polypodium vulgare L. 13, 14.
Polystichum filix mas Roth 7, 11, 12, 13.
 spinulosum DC. 6, 12.
Populus tremula L. 11.
Polunageta graminacea L. 15.
Potentilla anserina L. 4, 5, 15.
 argentea L. 11.
 erecta (L) Dalla Torre 5, 8, 9, 10, 11, 13.
 ecruma L. 8, 10, 11, 13.
 replans L. 8.
Primula farinosa L. 9.
 officinalis L. 6, 7, 10, 11, 13.
Prunella vulgaris L. 6, 8, 9.
Prunus padus L. 6, 7, 11, 13.
Pteris aquilina L. 13.
Pyrola rotundifolia L. 11.
 uniflora L. 12.
Pyrus malus L. 6.
 * β mitis Wallr. 6.
Ranunculus acer L. 6, 8, 9, 10, 13.
 anriconum L. 6, 7, 11.
 cassubicus L. 6, 11.
 ficaria L. 6, 7.
 flammula L. 15.
 polyanthemos L. 11.
Rhodanthes cathartica L. 6, 11, 13.
 frangula L. 6.
Rhodanthes major Ehrh. 1, 2.
 minor Ehrh. 8, 9, 13.
Ribes alpinum L. 6, 9, 10, 11, 12, 13.
 grossularia L. 5.
 nigra L. 5.
Rosa canina L.
 * v. glaucescens (Desv.) Schz. 6.
Kap. III. Fragestellung und Methodisches.

Bei ökologischen Studien und Forschungen hat man in erster Linie den äußeren und inneren Bau der Pflanzen berücksichtigt; der Aufbau der Sprosse und Sproßsysteme, das Überwintern, die Exposition und anatomische Konstruktion der Assimilationsorgane, die Schutzeinrichtungen gegen zu starke Transpiration, diese und viele andere ähnliche Fragen sind der Gegenstand weitgehender Untersuchungen vieler Forscher gewesen — in
diesen Bereich haben wir schon eine Fülle von Tatsachen und Theorien. Aber wie diese verschiedenen Organisationstypen tatsächlich im Leben der Pflanzen wirken, wie sich die Lebensprozesse unter verschiedenen äußeren Bedingungen abspielen, darüber liegen bloß wenige oder in vielen Fällen gar keine Untersuchungen vor.

Wenn wir auch auf diesem Wege zu ganz schönen Resultaten gekommen sind, viele Eigentümlichkeiten im äußeren und inneren Bau der Pflanzen entdeckt und erklärt worden sind, so leiden doch unsere Forschungen noch immer an einem Mangel, nämlich wir haben bloß eine auf Konstruktion sich stützende Kenntnis, wie die untersuchten äußeren und inneren Organisationen wirken, keine auf Beobachtungen fußende, solange wir nicht das Abspielen der Lebensvorgänge in der Natur verfolgen.

Beim Studium der Laubwiesen kam ich auf den Gedanken, es wäre vielleicht eine lohnende Aufgabe, direkt in der Natur die Lebensvorgänge der Pflanzen zu verfolgen, sich eine, wenn auch sehr dürftige und unvollständige, so doch empirisch gewonnene Vorstellung von den wechselnden, äußeren Faktoren und der variierenden Tätigkeit des Pflanzenlebens zu verschaffen. Es bietet sich auf diesem Gebiet ein reiches, noch unbebautes Feld der Forschungen dar, wobei es ganz unmöglich ist, alle Seiten des großen Problems gleichzeitig zu behandeln. Unzählig sind die Faktoren, die die Zusammensetzung eines Pflanzenver eins bestimmen, von vielen davon haben wir vielleicht noch keine Ahnung. Schon beim ersten Betrachten und Studieren der Laubwiesen tritt das Licht als ein überaus wichtiger Faktor in den Vordergrund, überall sehen wir die Zusammensetzung der Pflanzendecke und das Aussehen der Gewächse wechseln, je nach variierender Beleuchtung. Andere Faktoren haben wohl auch ihre sehr große Bedeutung, in erster Linie der Boden, und besonders, was die Verbreitung vieler Kräuter und Gräser betrifft, die Art und Beschaffenheit des Humus; ich brauche nur an die Buchenwälder zu erinnern, wo sich unter sehr gleichmäßigen Beleuchtungsverhältnissen die Bodenvegetation ganz verschieden gestaltet, je nachdem der Humus neutral oder sauer reagiert. Auf diesen Faktor jetzt schon einzugehen, ist ein sehr schwieriges Problem, so lange die Humusarten in chemischer Hinsicht so gut wie unbekannt angesehen werden können; erst in letzter Zeit hat man die Frage von pflanzenphysiologischer-experimenteller Seite aufgenommen (Reinitzer I, Möller I, Nikitinsky I), auch ist die Physiologie des Wurzelsystems speziell, was viele für die Ökologie wichtige Fragen betrifft, noch sehr wenig entwickelt. In den Vordergrund der ökologischen Forschungsarbeit, wahrscheinlich als eine Folge des leichteren Behandelns des Problems, wo chemische und physische Erörterungen von minderer Bedeutung sind, ist die Anpassung des Blattes und der Assimilationsorgane, besonders die Schutzeinrichtungen gegen zu starke Transpiration getreten. Eine auf die Physiologie des
Blattes gerichtete Untersuchung hatte also den Vorteil, daß viele Erfahrungen aus diesem Bereich schon vorlagen.

Durch die bekannten Arbeiten Wiesner’s (III—VII) hat die Pflanzengeographie kürzlich eine sehr brauchbare Methode erhalten, an verschiedenen Standorten den Lichtgenuß der Pflanzen zu untersuchen. Ich stellte mir daher die Aufgabe, beim Anwenden dieser Methode einige der in der Konstruktion der oberirdischen Organe am tiefsten eingreifenden Lebensvorgänge, nämlich die der Assimilation und Transpiration, zu studieren. Gleichzeitig wurde die auf die Transpiration einwirkende Luftfeuchtigkeit an den verschiedenen Standorten genau untersucht. In den durch direkte Beobachtungen gewonnenen Tatsachen hoffte ich daher, ein Material zu besitzen, das sowohl für das Auffassen der Anpassungsscheinungen, als auch für das tiefere Verständnis des Pflanzenlebens der Laubwiesen seinen Wert haben dürfte.

Beim Anfang meiner Untersuchungen wählte ich auf den Laubwiesen besonders solche Standorte aus, welche für das Stadium und für die Versuche charakteristisches Material darboten.

Es war zur Beurteilung vieler physiologischer Beobachtungen wichtig, Observationsserien über die Temperatur und Feuchtigkeit der Luft aufzustellen. Durch die Güte des Herrn Prof. H. E. Hamberg erhielt ich von der meteorologischen Zentralanstalt in Stockholm die erforderlichen Thermometer, die in einer kleinen Hütte aufgestellt wurden, und zwar von derselben Konstruktion, wie sie bei Hamberg’s Unternehmungen über das Einwirken der Wälder auf das Klima Schwedens (II) angewandt worden war. Ebenso erhielt ich einen Regenmesser. Die Beobachtungen wurden, wo möglich, dreimal des Tages gemacht, 8 Uhr Vm. sowie 2 und 9 Uhr Nm. Um die Luftfeuchtigkeit in der Pflanzendecke, also in der Laufschicht, wo die meisten Kräuter und Gräser transpirieren, zu untersuchen, wurde das wenig bekannte, aber für diesen Zweck sehr geeignete Hygrometer von Crova’s Konstruktion benutzt.

Eine kurze Beschreibung dieses Instruments dürfte hier angebracht sein. Die umstehende Figur gibt eine Vorstellung über das Aussehen desselben. Der aus blankgeputztem Nickel bestehende Behälter (gh) wird mit Äther gefüllt, durch Einblasen von Luft durch den Kautschukschlauch a wird die Flüssigkeit verdunstet und werden die Ätherdämpfe durch b ausgeführt; hierdurch entsteht die für die Bestimmung des Taupunktes nützige Temperatur, welche nun von dem in das Gefäß (gh) gesteckten Thermometer angegeben wird. Durch Saugen mittels eines Kautschukballons wird die zu untersuchende atmosphärische Luft durch das Rohr c—d, das durch den Ätherbehälter geht und da blankgeputzte Wände hat, langsam getrieben.
Wenn nun beim Abkühlen der Tau ausfällt, erscheint er als grauschwarzer Überzug an den blanken Wänden. Durch das mattgeschliffene Glas bei e und die kleine Linse bei f kann man das Innere vom Rohr f—e beobachten. Die Temperatur der Luft wird mit einem Schleuderthermometer gemessen und nach dem Bestimmen des Taupunktes ist es leicht, die relative Luftfeuchtigkeit zu berechnen. Dieses Instrument, das 23 cm hoch ist, wurde mitten zwischen die Kräuter und Gräser hineingesteckt, zuweilen unter die Blätter von Mercurialis perennis, Allium ursinum u. a. ganz versteckt, was also die Bestimmungen gerade in der Luftschicht auszuführen möglich macht, wo die Pflanzen ihre Blätter entwickeln.

Für die Lichtbestimmungen wurde die Wiesner'sche Methode benutzt, von welcher wegen ihrer allbekannten Verwendung eine Beschreibung nicht nötig erscheint. Durch die besondere Güte des Erfinders erhielt ich von ihm die nötigen Vergleichsfarben, wofür ich ihm meinen besten Dank ausspreche.

Um die Intensität der Assimilation zu beurteilen, wurde im ausgedehnten Maße die Sachs'sche Jodprobe gemacht. Dieselbe leidet jedoch, da die Neigung zur Stärkebildung bei verschiedenen Pflanzen ungleich ist, an einem Mangel, nämlich daran, daß ein Vergleich zwischen verschiedenen Arten nicht möglich ist. Auf die Zulässigkeit dieser Methode, die trotz ihrer Unvollkommenheit infolge ihrer leichten Verwendung eine sehr große Zahl von Versuchen gestattet, bin ich im Kapitel über Assimilation näher eingegangen.

![Fig. 7. Crova's Hygrometer](https://example.com/fig7.png)

Die angewandten Methoden, die mit den auf Laboratorien gebräuchlichen übereinstimmen, nötigten mich, eine kleine Hütte auf meiner unbewohnten Insel aufzurichten, zwecks Aufstellung der Instrumente und Einrichtung eines kleinen Laboratoriums. Einfachere Methoden, die mit zureichender Genauigkeit das Arbeiten auf Reisen zulassen, wären natürlicherweise sehr wünschenswert, doch dürfte man zuerst einige Erfahrung über pflanzenphysiologische Studien in der freien Natur gemacht haben.

Kap. IV. Wärme und Hydrometeoreen der Stationinsel; Variation der Temperatur und der Feuchtigkeit der Luft an verschiedenen Standorten.

In der nachstehenden Tabelle sind meine Beobachtungen über Temperatur und Luftfeuchtigkeit auf der Insel enthalten. Die Observationen können gewiß nicht den Anspruch auf Vollständigkeit machen, sie haben jedoch ihren Wert für die Diskussion meiner physiologischen Versuchsergebnisse. Die besten Serien sind im Juli und August aufgestellt worden, die Juni- und Juli-Serien sind in ihrem letzten Teile ziemlich vollständig in den Jahren 1900 und 1901, die Septemberserien in ihrem ersten Teile alle drei Jahre. (Siehe Tabelle auf nächster Seite.)

Temperatur. Es zeigt sich, daß die Insel im Frühling und Vorsommer bedeutend niedrigere Temperatur hat als die Binnenlandstationen Stockholm und Uppsala, besonders ist der Unterschied groß in den Mittags- und Abendstunden. Leider fehlen Beobachtungen von einem Punkte in der Nähe der Stationinsel ganz und gar. Die mit der Lage der Insel am besten übereinstimmenden Observationspunkte sind einige Leuchttürme, nämlich „Understen“ und „Svenska Högarne“, von welchen die Er-
Hesselman, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen.

<table>
<thead>
<tr>
<th></th>
<th>Juni</th>
<th></th>
<th></th>
<th></th>
<th>Juli</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 Uhr</td>
<td>2 Uhr</td>
<td>9 Uhr</td>
<td>8 Uhr</td>
<td>2 Uhr</td>
<td>9 Uhr</td>
<td>8 Uhr</td>
<td>2 Uhr</td>
</tr>
<tr>
<td></td>
<td>(t^0)</td>
<td>(f)</td>
</tr>
<tr>
<td>Skabbholmen</td>
<td>14°5</td>
<td>76</td>
<td>16°3</td>
<td>69</td>
<td>11°5</td>
<td>89</td>
<td>19°2</td>
<td>71</td>
</tr>
<tr>
<td>Uppsala</td>
<td>16°2</td>
<td>66</td>
<td>20°1</td>
<td>48</td>
<td>14°8</td>
<td>70</td>
<td>20°3</td>
<td>60</td>
</tr>
<tr>
<td>Stockholm</td>
<td>16°0</td>
<td>69</td>
<td>19°1</td>
<td>54</td>
<td>15°1</td>
<td>69</td>
<td>20°2</td>
<td>61</td>
</tr>
<tr>
<td>Differenzen</td>
<td>-1,7</td>
<td>+10</td>
<td>-3,8</td>
<td>+21</td>
<td>-3,3</td>
<td>+19</td>
<td>-1,1</td>
<td>+11</td>
</tr>
<tr>
<td></td>
<td>-1,5</td>
<td>+7</td>
<td>-2,8</td>
<td>+15</td>
<td>-3,6</td>
<td>+20</td>
<td>-1,6</td>
<td>+10</td>
</tr>
</tbody>
</table>

	August				Sept.			
	8 Uhr	2 Uhr	9 Uhr	2 Uhr				
	\(t^0 \)	\(f \)						
Skabbholmen	16°4	75	18°1	66	13°9	87	14°3	73
Uppsala	16°6	68	20°5	47	14°8	75	16°2	59
Stockholm	16°7	69	20°6	52	16°1	73	15°5	63
Differenzen	-0,2	+7	-2,4	+19	-0,9	+12	-1,9	+14
	-0,3	+6	-1,9	+14	-2,2	+14	-1,2	+10

Mitteltemperatur während der Jahre 1859—1894.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undresten</td>
<td>-1,9</td>
<td>-3,3</td>
<td>2,1</td>
<td>+1,2</td>
<td>+4,5</td>
<td>+10,3</td>
<td>+14,6</td>
<td>+14,8</td>
<td>+11,7</td>
<td>+6,8</td>
<td>+2,7</td>
<td>-0,8</td>
</tr>
<tr>
<td>Sv. Högarne</td>
<td>-1,1</td>
<td>-2,3</td>
<td>1,8</td>
<td>+1,6</td>
<td>+5,2</td>
<td>+11,0</td>
<td>+15,3</td>
<td>+15,2</td>
<td>+12,1</td>
<td>+7,5</td>
<td>+3,3</td>
<td>-0,1</td>
</tr>
<tr>
<td>Uppsala</td>
<td>-4,2</td>
<td>-4,6</td>
<td>-2,6</td>
<td>+2,8</td>
<td>+8,4</td>
<td>+14,0</td>
<td>+16,1</td>
<td>+14,6</td>
<td>+10,5</td>
<td>+4,9</td>
<td>+0,1</td>
<td>-3,6</td>
</tr>
<tr>
<td>Stockholm</td>
<td>-3,1</td>
<td>-3,4</td>
<td>-1,7</td>
<td>+3,2</td>
<td>+8,4</td>
<td>+14,0</td>
<td>+16,6</td>
<td>+15,3</td>
<td>+11,5</td>
<td>+6,0</td>
<td>+1,4</td>
<td>-2,2</td>
</tr>
</tbody>
</table>

Feuchtigkeit der Luft. Dieses für die Transpiration sehr wichtige, meteorologische Element verhält sich hier sehr abweichend von dem der Binnenlandstationen. Die relative Feuchtigkeit ist bedeutend höher, besonders in den Mittags- und Abendstunden, und die Unterschiede übersteigen bisweilen im Mittel 20%. Das Klima der Insel ist in dieser Hinsicht ausgeprägt maritim, indem auch der größte Feuchtigkeitsdruck am Mittag eintritt; der mittlere Druck war im Juli der drei Observations-

1) Hamberg III, pag. 68.
jahre am Mittage 2,4 mm größer als am Morgen und Abend, also ein Verhältnis, das sich sonst nur auf ausgeprägt maritimen Stationen zeigt; auf Binnenlandstationen ist infolge der Konvektion der Druck am Mittage bekanntlich etwas niedriger als am Morgen und Abend. Observationsserien von mehreren Jahren über die Feuchtigkeit der Luft an den Feuertürmen oder an anderen mit Skabbholmen vergleichbaren Stationen liegen leider nicht vor.

Trotz der ausgeprägt maritimen Lage kann jedoch an sehr warmen und heiteren Sommertagen die relative Feuchtigkeit sehr niedrige Werte erreichen, als Beispiele werden aus meinem Observationsjournal angeführt:

- 11. „ 10,45 „ vorm. 29 °/o schwach südl. Wind.
- 20. „ 2 „ nachm. 29 °/o „ „

Während des besonders trockenen und heißen Sommers 1901 war in Uppsala die niedrigste beobachtete relative Feuchtigkeit 12 °/o, notiert am 11. Juli 3 Uhr nachm. 1), mehrmals wurde im Juli eine Feuchtigkeit von weniger als 30 °/o beobachtet.

Der Niederschlag nimmt in Uppland vom nordwestlichen Teil an gegen die Ostsee hin mehr und mehr ab, so daß das Küstenland, Roslagen genannt, weniger Regen erhält als das Binnenland. Für Skabbholmen zeigt sich bei einem Vergleich zwischen Sterbsnäs, 5 km nördlich von der Stationsinsel und Uppsala als Mittelzahl von siebzehnjähriger Beobachtung für Sterbsnäs 436,6 mm und für Uppsala 533,1 mm.

Während der drei Observationsjahre erhielt jedoch im Juli und August Skabbholmen oft reichlicheren Niederschlag als das Binnenland, was auch aus beigefügter Tabelle hervorgeht.

Das Klima der Insel zeichnet sich also im Vergleich mit dem des Binnenlandes durch kühle Frühlings- und Vorsommer, milde Herbsts und Winter, hohe relative Feuchtigkeit im Sommer und weniger Niederschlag im allgemeinen aus.

Niederschlag in Uppsala und auf Skabbholmen Juli und August 1899—1901.

<table>
<thead>
<tr>
<th>Monat</th>
<th>1899</th>
<th>1900</th>
<th>1901</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skabbholmen</td>
<td>Uppsala</td>
<td>Skabbholmen</td>
</tr>
<tr>
<td>Juli</td>
<td>56,1</td>
<td>34,3</td>
<td>37,1</td>
</tr>
<tr>
<td>August</td>
<td>19,8</td>
<td>38,8</td>
<td>36,5</td>
</tr>
<tr>
<td></td>
<td>75,9</td>
<td>73,1</td>
<td>73,6</td>
</tr>
</tbody>
</table>

1) Hildebrandsson (I, 3).
Wie wertvoll auch die Kenntnis des Klimas in pflanzen-geographischer Hinsicht ist, so reicht sie doch noch nicht hin zur Erklärung des Wechsels im Pflanzenleben an verschiedenen Standorten, und will man das Abspielen der Lebensvorgänge verfolgen, so muß man gerade dann die meteorologischen Faktoren untersuchen, und die Eigenschaften der Luft, in welcher die Pflanzen ihre Blätter entwickeln, kennen lernen. In bezug auf die hier gemachten Untersuchungen ist ein Studium der Temperatur und besonders der relativen Feuchtigkeit der Luft von größter Bedeutung. Es liegt nämlich sehr nahe, anzunehmen, daß nicht bloß mit Hinsicht auf den ersten Faktor, sondern auch auf die relative Feuchtigkeit bestimmte Unterschiede existieren zwischen den offenen, von sonnenliebenden, oder sogar xerophilen Pflanzen bewohnten Wiesen und den Baumbeständen, unter welchen nur Schattenpflanzen gedeihen, und wo das Sonnenlicht nur spärlich kleine, bleiche, über die grünen Blätter hin und her spielende Sonnenflecke bildet. Es ist auch eine in ökologischen Arbeiten oft geäußerte Ansicht, daß die Blätter der Schattenpflanzen ihre eigentümliche, anatomische Konstruktion wenigstens teilweise der hohen, relativen Feuchtigkeit ihrer Standorte verdanken. Es schien mir daher sehr wichtig zu sein, die Variation der Luftfeuchtigkeit an den verschiedenen Standorten der Laubwiesen zu untersuchen.

Zu diesem Zwecke wurden verschiedene Standorte gewählt und da mit dem vorher beschriebenen Crova's Hygrometer während der Sommer 1899 und 1900 Temperatur- und Feuchtigkeitsbestimmungen ausgeführt. Für die Observationen waren die Mittagsstunden die geeignetsten, weil man da, wie frühere forstmeteorologische Beobachtungen lehren, die größten Unterschiede erwarten konnte. Ehe ich zur Mitteilung der gewonnenen Daten übergehe, werden hier die Beschreibungen über Lage und Vegetation der untersuchten Lokalitäten vorausgeschickt, die die typischen Standorte der Laubwiesen repräsentieren.

Die Vegetation hatte folgende Zusammensetzung:
reichlich bis ziemlich reichlich:

Achillea millefolium.
Agrostis vulgaris.
Anthoxanthum odoratum.

zerstreut:
Alchemilla vulgaris * pastoralis.
Briza media.
Gentiana campestris a succia.
Geranium silvaticum.

spärlich:
Anemone nemorosa.
Galium boreale.

Chrysanthemum leucanthemum.
Convallaria majalis.
Nardus stricta.
Plantago lanceolata.
Potentilla erecta.
Spiraea filipendula.
Viola canina.

Gern ricale.
Festuca ovina.
Hypericum quadrangulum.
Hesselinaii, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen. 353

Orchis sambucina. Rhinanthus minor.
Poa pratensis. Ranunculus acer.
Potentilla verna. Siegelaria decumbens.
Primula officinalis. Trifolium repens.
Prunella vulgaris. Veronica chamaedrys.
Ranunculus acer.

1) Über die Bedeutung dieser Ausdrücke siehe Kap. VI Lichtbedürfnis etc.

Hesselinaii, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen. 353

Standort III. Ein Bestand aus 3 m hohen Wacholderstränchern, die ziemlich dünne stehen; der Schatten ist schwach, bei Mittagszeit beträgt der relative Lichtgenuß 1/3—1/5 vom gesamten Tageslicht. Zwischen den Sträuchern wächst eine ziemlich reiche Krautflora von folgenden Arten.

reichlich — ziemlich reichlich:

Convallaria majalis.
Geranium sanguineum.

spärlich:

Dactylis glomerata.
Galium boreale.
Mélium effusum.

einzeln:

Agrostis vulgaris.
Anthoxanthum odoratum.
Fragaria vesca.

reichlich — ziemlich reichlich:

Briza media.
Carex panicca.
Galium boreale.
Mélium veerale.
Nardus stricta.

zersprent:

Agrostis canina.
Alchemilla vulgaris, filiculisl.
Galium palustre.

spärlich:

Angelica silvestris.
Carex dioica.

" pulicaris.
Cirsium heterophyllum.
Festuca rubra.

einzeln:

Antennaria dioica.
Carex capillaris.

" Goodenoughii.
" pallescens.
Luzula multiflora.

Der Boden wird von einem Moossteppich, aus folgenden Arten bestehend, bedeckt, nämlich Autococcus palustre Schw., Hylcomium splendens Br. et Sch. und squarrosum Br. et Sch., Hypnum parietinum L.
Standort V. Ein Eschenhain. Der Niederwald besteht aus Eschen und spärlichen Ebereschen, hier und da Alnus glutinosa. Unter den Bäumen kommen allerlei mittelhohe Sträucher und junge Bäume vor, nämlich:

- Fraxinus excelsior, zerstreut.
- Lonicera xylosteum spärlich.
- Prunus padus
- Ribes alpinum
- Viburnum opulus

Berberis vulgaris einzeln.
Juniperus communis
Rhamnus cathartica
Rosa canina var. lutetiana einzeln.
Sorbus aucuparia

Der Schatten ist nicht besonders stark, am Mittag beträgt der relative Lichtgenuß 1/10 vom gesamten Tageslicht. Die Bodenvegetation besteht aus folgenden Arten:

reichlich—ziemlich reichlich:
- Allium ursinum.
- Anemone hepatica.
- nemorosa.
- Cellaria majalis.

zestreut:
- Melampyrum nemorosum.
- Corydalis laxa.
- Gentiana lutea.
- Geranium sylvaticum.
- Heracleum sibiricum.
- Melandrium rubrum.
- Paris quadrifolia.

spärlich:
- Stachys silvatica.
- Polygonatum multiflorum.
- Primula officinalis.
- Spíríca alniaria.
- Triticum caninum.
- Viola riviniana.

einzeln:
- Achillea millefolium.
- Aegopodium podagraria.
- Anthriscus sylvestris.
- Arenaria trinervia.
- Dactylis glomerata.
- Fragaria vesca.
- Fraxinus excelsior.
- Galium boreale.
- Geum urbanum.
- Geranium sanguineum.
- Glechoma hederacea.
- Milium effusum.
- Origanum vulgare.
- Polystichum spinulosum.
- Prunella vulgaris.
- Ranunculus acris.
- Veronica chamaedrys.

Der Boden wird von verfaulenden Blättern, Zweigen und dergleichen bedeckt, bloß hier und da kommen einige Moose vor, wie Hylocomium triquetrum Br. et Sch. und Mnium cuspidatum H.

In den nachstehenden Tabellen sind die meisten Beobachtungen aufgezeichnet, wir finden da 79 Temperatur- und Feuchtigkeitsbestimmungen im Sommer 1899, 277 Temperatur- und 222 Feuchtigkeitsbestimmungen 1900. In den Tabellen sind außerdem Beobachtungszeit und unter der Rubrik Witterung gleichzeitige Temperatur- und Feuchtigkeitsbestimmungen, mit den Psykrometerthermometer gemacht, nebst allgemeine Bemerkungen über Wind, Bewölkung etc. angegeben.
<table>
<thead>
<tr>
<th>Rebele, Pfahlhe, West</th>
<th>Rebele, Pfahlhe, Ost</th>
<th>Rebele, Pfahlhe, NW</th>
<th>Rebele, Pfahlhe, Höhe Schwalb. X.</th>
<th>Rebele, Pfahlhe, NW</th>
<th>Rebele, Pfahlhe, NW</th>
<th>Rebele, Pfahlhe, NW</th>
<th>Rebele, Pfahlhe, NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Tabellen über Temperaturen und Feuchtigkeit der Luft an verschiedene Stellen.

Sommer 1899.

Standorten während der Sommer 1899 und 1900.
<table>
<thead>
<tr>
<th>Tag</th>
<th>Uhr</th>
<th>Beob.</th>
<th>Zeit</th>
<th>St. I</th>
<th>St. II</th>
<th>St. III</th>
<th>St. IV</th>
<th>St. V</th>
<th>Witterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Juni</td>
<td>12.10—1.30</td>
<td>1690</td>
<td>580</td>
<td>1590</td>
<td>590</td>
<td>1495</td>
<td>570</td>
<td>1595</td>
<td>550</td>
</tr>
<tr>
<td>20.</td>
<td>1.5—2.5</td>
<td>1390</td>
<td>670</td>
<td>1190</td>
<td>720</td>
<td>1397</td>
<td>610</td>
<td>1296</td>
<td>650</td>
</tr>
<tr>
<td>22.</td>
<td>2.30—4.15</td>
<td>1790</td>
<td>560</td>
<td>1790</td>
<td>580</td>
<td>1795</td>
<td>580</td>
<td>1598</td>
<td>639</td>
</tr>
<tr>
<td>23.</td>
<td>2—3.15</td>
<td>1790</td>
<td>700</td>
<td>1690</td>
<td>570</td>
<td>1795</td>
<td>570</td>
<td>1696</td>
<td>590</td>
</tr>
<tr>
<td>26.</td>
<td>1.15—1.35</td>
<td>2995</td>
<td>630</td>
<td>1995</td>
<td>510</td>
<td>2996</td>
<td>570</td>
<td>1795</td>
<td>570</td>
</tr>
<tr>
<td>27.</td>
<td>12.25—1.20</td>
<td>2598</td>
<td>450</td>
<td>2492</td>
<td>500</td>
<td>2596</td>
<td>450</td>
<td>2392</td>
<td>510</td>
</tr>
<tr>
<td>28.</td>
<td>2—2.5</td>
<td>1900</td>
<td>640</td>
<td>1890</td>
<td>700</td>
<td>1890</td>
<td>640</td>
<td>1899</td>
<td>650</td>
</tr>
<tr>
<td>2. Juli</td>
<td>12.25—1.20</td>
<td>2488</td>
<td>410</td>
<td>2295</td>
<td>700</td>
<td>2595</td>
<td>610</td>
<td>2590</td>
<td>570</td>
</tr>
<tr>
<td>4.</td>
<td>1.30—2.30</td>
<td>1690</td>
<td>830</td>
<td>1690</td>
<td>820</td>
<td>1495</td>
<td>850</td>
<td>1490</td>
<td>840</td>
</tr>
<tr>
<td>5.</td>
<td>1—1.30</td>
<td>1490</td>
<td>810</td>
<td>1390</td>
<td>710</td>
<td>1690</td>
<td>640</td>
<td>1393</td>
<td>720</td>
</tr>
<tr>
<td>6.</td>
<td>1.15—2.30</td>
<td>1798</td>
<td>700</td>
<td>1790</td>
<td>750</td>
<td>1795</td>
<td>750</td>
<td>1395</td>
<td>830</td>
</tr>
<tr>
<td>10.</td>
<td>1.15—1.290</td>
<td>1390</td>
<td>880</td>
<td>1295</td>
<td>760</td>
<td>1495</td>
<td>820</td>
<td>1390</td>
<td>870</td>
</tr>
<tr>
<td>11.</td>
<td>1.30—1.3</td>
<td>2398</td>
<td>580</td>
<td>1592</td>
<td>540</td>
<td>2098</td>
<td>630</td>
<td>1997</td>
<td>570</td>
</tr>
<tr>
<td>12.</td>
<td>2—2.30</td>
<td>2298</td>
<td>610</td>
<td>2295</td>
<td>700</td>
<td>2595</td>
<td>610</td>
<td>2498</td>
<td>620</td>
</tr>
<tr>
<td>13.</td>
<td>2—2.30</td>
<td>1998</td>
<td>870</td>
<td>1795</td>
<td>770</td>
<td>1797</td>
<td>730</td>
<td>1795</td>
<td>790</td>
</tr>
<tr>
<td>16.</td>
<td>12.20—1.20</td>
<td>2398</td>
<td>650</td>
<td>1390</td>
<td>740</td>
<td>1994</td>
<td>750</td>
<td>1890</td>
<td>750</td>
</tr>
<tr>
<td>18.</td>
<td>1.25—3.10</td>
<td>1798</td>
<td>780</td>
<td>1690</td>
<td>790</td>
<td>1595</td>
<td>820</td>
<td>1595</td>
<td>800</td>
</tr>
<tr>
<td>19.</td>
<td>2—2.45—1</td>
<td>2298</td>
<td>620</td>
<td>2295</td>
<td>820</td>
<td>2790</td>
<td>690</td>
<td>2590</td>
<td>690</td>
</tr>
<tr>
<td>20.</td>
<td>1.20—2.20</td>
<td>2198</td>
<td>680</td>
<td>1795</td>
<td>850</td>
<td>2095</td>
<td>670</td>
<td>2095</td>
<td>650</td>
</tr>
<tr>
<td>21.</td>
<td>1.20—2.35</td>
<td>1798</td>
<td>630</td>
<td>1690</td>
<td>595</td>
<td>1895</td>
<td>490</td>
<td>1795</td>
<td>580</td>
</tr>
<tr>
<td>22.</td>
<td>1.25—3.15</td>
<td>1798</td>
<td>780</td>
<td>1795</td>
<td>880</td>
<td>1895</td>
<td>760</td>
<td>1795</td>
<td>860</td>
</tr>
<tr>
<td>26.</td>
<td>1—1.25</td>
<td>1900</td>
<td>780</td>
<td>1795</td>
<td>840</td>
<td>1795</td>
<td>880</td>
<td>1798</td>
<td>860</td>
</tr>
<tr>
<td>27.</td>
<td>2—2.20</td>
<td>1798</td>
<td>630</td>
<td>1895</td>
<td>650</td>
<td>1892</td>
<td>630</td>
<td>1895</td>
<td>660</td>
</tr>
<tr>
<td>28.</td>
<td>1.50—2.12</td>
<td>1900</td>
<td>780</td>
<td>1900</td>
<td>780</td>
<td>1900</td>
<td>780</td>
<td>1900</td>
<td>780</td>
</tr>
<tr>
<td>1. Aug.</td>
<td>1.30—2.45</td>
<td>1900</td>
<td>780</td>
<td>1795</td>
<td>750</td>
<td>1898</td>
<td>720</td>
<td>1692</td>
<td>850</td>
</tr>
<tr>
<td>2.</td>
<td>1.30—2.35</td>
<td>1798</td>
<td>840</td>
<td>1795</td>
<td>840</td>
<td>1995</td>
<td>770</td>
<td>1898</td>
<td>880</td>
</tr>
<tr>
<td>3.</td>
<td>1.30—3</td>
<td>2095</td>
<td>770</td>
<td>2095</td>
<td>770</td>
<td>2095</td>
<td>770</td>
<td>2095</td>
<td>770</td>
</tr>
<tr>
<td>4.</td>
<td>2—3.10</td>
<td>2198</td>
<td>740</td>
<td>1900</td>
<td>800</td>
<td>2091</td>
<td>780</td>
<td>1895</td>
<td>760</td>
</tr>
<tr>
<td>6.</td>
<td>1.30—2.45</td>
<td>2090</td>
<td>630</td>
<td>1890</td>
<td>730</td>
<td>1890</td>
<td>730</td>
<td>1890</td>
<td>740</td>
</tr>
<tr>
<td>Sommer</td>
<td>WP & C & 7 & 11</td>
<td></td>
<td></td>
<td>07</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Hesselnian, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bewässerter Flachso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>als Fischso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>als Schwäbisch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hesselnian, als Fischso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bewässerter Flachso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>als Fischso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>als Schwäbisch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bewässerter Flachso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>als Fischso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>als Schwäbisch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table appears to be incomplete and contains placeholders for values. The natural text seems to be discussing the Kenntnis (knowledge) of plant life in Swedish meadows.
Zusammenstellung der Beobachtungsergebnisse in Mittelzahlen.

Sommer 1899.

<table>
<thead>
<tr>
<th>St.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>Psykr.*</th>
<th>Zahl</th>
<th>von Obser.</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>74.7</td>
<td>17.1</td>
<td>74.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>17.4</td>
<td>65.0</td>
</tr>
<tr>
<td>17.1</td>
<td>71.8</td>
<td>—</td>
<td>18.4</td>
<td>70.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16.8</td>
<td>71.2</td>
<td>—</td>
<td>—</td>
<td>17.5</td>
<td>72.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18.3</td>
<td>74.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>17.0</td>
<td>79</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Sommer 1900.

<table>
<thead>
<tr>
<th>St.</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>Psykr.*</th>
<th>Zahl</th>
<th>von Obser.</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.32</td>
<td>—</td>
<td>16.44</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>16.72</td>
<td>—</td>
</tr>
<tr>
<td>17.36</td>
<td>—</td>
<td>16.43</td>
<td>—</td>
<td>17.06</td>
<td>—</td>
<td>16.07</td>
<td>16.19</td>
<td>—</td>
</tr>
<tr>
<td>18.11</td>
<td>79.2</td>
<td>17.13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>16.70</td>
<td>—</td>
</tr>
<tr>
<td>17.95</td>
<td>70.8</td>
<td>16.98</td>
<td>70.6</td>
<td>18.18</td>
<td>—</td>
<td>16.74</td>
<td>16.87</td>
<td>—</td>
</tr>
<tr>
<td>17.06</td>
<td>70.8</td>
<td>16.98</td>
<td>70.7</td>
<td>18.19</td>
<td>69.4</td>
<td>16.62</td>
<td>16.70</td>
<td>—</td>
</tr>
<tr>
<td>18.01</td>
<td>69.9</td>
<td>17.15</td>
<td>—</td>
<td>18.04</td>
<td>16.74</td>
<td>16.88</td>
<td>72.4</td>
<td>—</td>
</tr>
<tr>
<td>18.00</td>
<td>70.5</td>
<td>17.00</td>
<td>70.4</td>
<td>18.08</td>
<td>69.0</td>
<td>16.65</td>
<td>70.6</td>
<td>16.68</td>
</tr>
</tbody>
</table>

Da alle Observationen mit demselben Instrument gemacht worden sind, so sind die Beobachtungen an verschiedenen Standorten nicht gleichzeitig, sondern unmittelbar nacheinander ausgeführt worden, was wohl auf die Mittelzahlen keinen beträchtlichen Einfluß ausgeübt haben kann. Die meisten Beobachtungen sind an schönen, heiteren Tagen und sehr wenige an regnerischen, trüben gemacht worden; da die Unterschiede wohl bei schönem Wetter am größten sind, stellen die mitgeteilten Daten nicht wirkliche Mittelzahlen dar, führen aber zu einer Vorstellung von den relativen Maximaldifferenzen.

Temperatur. Es hat sich gezeigt, daß das offene Feld und der Wacholderbestand am Mittag am wärmsten sind und an Mittelzahl 1° bis 1.4° höhere Temperatur zeigen als die andern Standorte. Die Ursachen hiervon sind teils die sonnenoffene Lage, teils die Trockenheit des Bodens, indem die *Sedum*-wiese trotz ihrer Lage infolge des feuchten und tofartigen Bodens besonders im Frühling ziemlich kühl ist. Auf der sonnenoffenen Wiese war die Temperatur in einer Höhe von 0,3 m über dem Boden mit wenigen Ausnahmen höher als die von 1,8 m, in welcher Höhe die gewöhnlichen Pyrometerthermometer standen. Die Unterschiede waren gewöhnlich am größten an sonnigen, ruhigen Tagen, am kleinsten an trüben, im Sommer 1900 war der Unterschied bei 56 Observationen im Mittel nur 0,6°. Die übrigen Standorte weisen im Mittel sehr kleine Differenzen untereinander auf.

* Mittel von gleichzeitigen Pyrometerbeobachtungen.
Luftfeuchtigkeit. Die Feuchigkeitsbeobachtungen zeigen an den verschiedenen Tagen eine ziemlich große Variation, was wohl teilweise seinen Grund in der Ungleichzeitigkeit der Observationen hat. Die Mittelzahlen dagegen kommen einander sehr nahe. Der Wacholderbestand ist am trockensten, zwischen den dichtstehenden *Mercurialis*-Stengeln im Eschenhain ist die feuchteste Luft beobachtet worden; im Sommer 1900, wo die längsten Beobachtungsserien gemacht worden sind, betrug die größte Differenz nur 3,9 \(^\circ\) _o_. Die absolute Feuchtigkeit hatte nach den 41 gleichzeitigen Observationen im Sommer 1900 folgende Werte:

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,743</td>
<td>9,737</td>
<td>10,535</td>
<td>10,023</td>
<td>10,330</td>
</tr>
</tbody>
</table>

Hierauf ist ersichtlich, daß die Winde beim Verteilen der Temperatur und Feuchtigkeit in den niedrigsten Luftschichten bloß eine untergeordnete Rolle spielen. Von Interesse ist es daher, eine ungefähre Vorstellung zu gewinnen, wie weit die Winde, welche über die großen Wasserflächen ungehindert wehen, in die ungleichen Pflanzenformationen der untersuchten Insel eindringen können. Einige Beobachtungen, die im Sommer 1900 hierüber gemacht worden sind, verdienen hier erwähnt zu werden.

Die Bestimmungen wurden mit einem ziemlich großen Schalenkreuzanemometer ausgeführt und die Observationen in folgender Weise gemacht. Nachdem auf einem geeigneten, für die herrschende Windrichtung offenen Punkte die Geschwindig-

Beobachtungen über die Stärke des Windes an den verschiedenen fünf Standorten.

<table>
<thead>
<tr>
<th>Windrichtung</th>
<th>Offener Platz</th>
<th>St. I</th>
<th>St. II</th>
<th>St. III</th>
<th>St. IV</th>
<th>St. V</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW.</td>
<td>8 m</td>
<td>2 m</td>
<td>1 m</td>
<td>Nahezu</td>
<td>Nahezu</td>
<td>Still</td>
</tr>
<tr>
<td>WNW.</td>
<td>4 m</td>
<td></td>
<td></td>
<td>Still</td>
<td>Still</td>
<td>Still</td>
</tr>
<tr>
<td>N.</td>
<td>8 m</td>
<td>1 m</td>
<td></td>
<td>Still</td>
<td>Still</td>
<td>Still</td>
</tr>
<tr>
<td>NW.</td>
<td>10 m</td>
<td>3 m</td>
<td></td>
<td>Still</td>
<td>1 m</td>
<td>Still</td>
</tr>
<tr>
<td>N.</td>
<td>7 m</td>
<td>1 m</td>
<td>1 m</td>
<td>Still</td>
<td>Still</td>
<td>Still</td>
</tr>
<tr>
<td>S.</td>
<td>7 m</td>
<td>1 m</td>
<td>Still</td>
<td>Still</td>
<td>1 m</td>
<td>Still</td>
</tr>
</tbody>
</table>

Die Feuchtigkeit der Luft in der Pflanzendecke wird augenscheinlich vornehmlich durch zwei Faktoren bestimmt, nämlich durch die Temperatur und die Beschaffenheit des wasserausdünstenden Bodens, und da sowohl die Wärme als auch die
Größe der Wasserverdunstung in einer Laubwiese von oben beschriebener Art ziemlich parallel mit der Beleuchtung wechselt, so sind die gefundenen Ergebnisse ganz erklärlich. Da die ausgewählten Observationspunkte mit Hinsicht auf Lage, Zusammensetzung der Vegetation etc. nichts besonders abweichendes von den gewöhnlichen Verhältnissen darbieten, so will ich auf Grund meiner jetzigen Erfahrung behaupten, daß in den Laubwiesen der Scheeren trotz des starken Wechsels der Vegetation die relative Luftfeuchtigkeit in den verschiedenen Beständen und auf den sonnenoffenen Wiesen durchschnittlich bloß um kleine Werte differiert.

Es fragt sich nun, inwieweit die oben gefundenen große Übereinstimmung der relativen Luftfeuchtigkeitswerte durch das maritime Klima der Insel, und zwar in erster Linie durch die hohe Luftfeuchtigkeit und die Winde verursacht worden ist. Ebenso wäre es interessant zu wissen, ob man auch im Binnenlande ähnliche Verhältnisse wiederfinden kann. Zwecks Beantwortung dieser ersten Frage habe ich die Mittelwerte der Beobachtungen an trockenen Tagen berechnet. Als trockene Tage wurden solche angesehen, wo um 2 Uhr nachm. die relative Feuchtigkeit einen Wert von weniger als 60\% betrug\(^1\); es fanden sich in den Sommern 1899 und 1900 achtzehn solche Beobachtungstage. Aus meinen Unternehmungen ergab sich folgendes Resultat:

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luft</td>
<td>54</td>
<td>65</td>
<td>62</td>
<td>62</td>
<td>65</td>
</tr>
</tbody>
</table>

Es stellte sich also heraus, daß auch an solchen Tagen die ungleichen Pflanzenformationen sehr wenig voneinander abweichen; die erwähnte große Übereinstimmung ist also nicht an eine für unser Klima ungewöhnlich hohe relative Luftfeuchtigkeit gebunden. Was weiter den Wind betrifft, so sind die Scheeren in dieser Hinsicht nicht günstiger gestellt als das Binnenland, da der Wind die Verschiedenheiten in Temperatur und Feuchtigkeit der Luft zu verwischen strebt. Es dürfte daher als sehr wahrscheinlich angesehen werden, daß in Laubwiesen, wo Matten von dichter Gras- und Krautvegetation mit größeren und kleineren Baum- und Strauchbeständen abwechseln, die relative Feuchtigkeit der Luft an den verschiedenen Standorten im Durchschnitt nur um kleine Werte im Mittel differiert. In den Hantäfeln haben wir wahrscheinlich, nach den Beobachtungen im Eschenhain zu urteilen, eine höhere Luftfeuchtigkeit als an offenen Wiesen.

\(^1\) Nach Hamberg (IV, pag. 326) ist in Uppsala die relative Feuchtigkeit um 2 Uhr mittags im Juli 80\%.

welche gleichzeitig mit den Beobachtungen im Rasen auf der sonnenoffenen Wiese auf Station I vorgenommen worden sind, und läßt also einen Vergleich zwischen der Feuchtigkeit am Boden und derjenigen in einer Höhe von 1,8 m zu. Wir dürfen indessen die gefundenen Werte nicht ohne weiteres miteinander vergleichen, sondern müssen erst eine Diskussion vor- ausschicken. Durch die Untersuchungen von Aron Svensson (I) und Ekholm (I) ist nachgewiesen worden, daß an der blanken Metallfläche des Hygrometers Crova’s der Taupunkt oft zu hoch ausfällt, und daß diese Erhöhung ziemlich regellos erscheint. Um nun zu bestimmen, wie groß die Abweichung der Bestimmungen mit dem Hygrometer Crova’s von den gewöhnlichen Psychrometerbeobachtungen ist, wurde im August und September eine Observationsserie aufgestellt. Die Bestimmungen waren in folgender Weise ausgeführt worden: Auf einem Tische unmittelbar unter den Psychrometerthermometern war das Hygrometer aufgestellt worden, zuerst waren jedesmal die Psychrometerthermometer abgelesen worden, dann eine Bestimmung mittels Crova’s Hygrometer möglichst schnell ausgeführt, und dann abermals die Thermometer abgelesen worden. Zeigten nun die beiden Bestimmungen mittels des Psychrometers einen Unterschied, was dann und wann geschah, so wurde das Mittel mit der Hygrometerbeobachtung verglichen. Die Tabelle zeigt, daß die Bestimmungen mittels der beiden Instrumente bisweilen ein wenig voneinander abweichen, daß aber in einer längeren Serie die Mittelwerte einander sehr nahe kommen. Eine Gleichstellung beider Bestimmungsarten halte ich daher für zulässig.

Vergleichstabelle zwischen Psychrometer- und Hygrometerbestimmungen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Aug. 5,30 p. m.</td>
<td>58 %</td>
<td>58 %</td>
<td>+0</td>
<td>Schwacher Sonnenschein. Rußiges Wetter.</td>
</tr>
<tr>
<td>20. " 12,0 m.</td>
<td>45 %</td>
<td>45 %</td>
<td>+0</td>
<td>Ziemlich bewölk.t. Schwacher Wind.</td>
</tr>
<tr>
<td>23. " 12,15 p. m.</td>
<td>66 %</td>
<td>66 %</td>
<td>+0</td>
<td>Bewölk.t. Windig.</td>
</tr>
<tr>
<td>23. " 12,45 p. m.</td>
<td>64 %</td>
<td>64 %</td>
<td>+0</td>
<td>Sonnenschein. "Frischer Wind.</td>
</tr>
<tr>
<td>24. " 2,0 p. m.</td>
<td>50 %</td>
<td>51 %</td>
<td>+1</td>
<td>" " Rußiges Wetter.</td>
</tr>
<tr>
<td>25. " 2,0 p. m.</td>
<td>68 %</td>
<td>71 %</td>
<td>+3</td>
<td>Schwacher Wind.</td>
</tr>
<tr>
<td>7. Sept. 10,50 a. m.</td>
<td>46 %</td>
<td>48 %</td>
<td>+2</td>
<td>" " "</td>
</tr>
<tr>
<td>8. " 3,35 p. m.</td>
<td>52 %</td>
<td>52 %</td>
<td>+0</td>
<td>" " "</td>
</tr>
<tr>
<td>8. " 11,45 a. m.</td>
<td>50 %</td>
<td>50 %</td>
<td>+0</td>
<td>" " "</td>
</tr>
<tr>
<td>8. " 12,15 p. m.</td>
<td>52 %</td>
<td>52 %</td>
<td>+0</td>
<td>" " "</td>
</tr>
<tr>
<td>9. " 2,0 a. m.</td>
<td>55 %</td>
<td>54 %</td>
<td>-1</td>
<td>" " "</td>
</tr>
<tr>
<td>9. " 11,30 a. m.</td>
<td>57 %</td>
<td>57 %</td>
<td>+0</td>
<td>" Bewölk.t. Schwacher Wind.</td>
</tr>
<tr>
<td>14. " 2,30 p. m.</td>
<td>72 %</td>
<td>71 %</td>
<td>-1</td>
<td>Sonnenschein. "Windig.</td>
</tr>
<tr>
<td>14. " 2,45 p. m.</td>
<td>71 %</td>
<td>70 %</td>
<td>-1</td>
<td>" " "</td>
</tr>
<tr>
<td>24. " 11,15 a. m.</td>
<td>90 %</td>
<td>89 %</td>
<td>-1</td>
<td>" " "</td>
</tr>
</tbody>
</table>

Mittel 59,7 % 59,8 % + 0,1
Es zeigt sich bei dem Vergleich, daß dann und wann die Feuchtigkeit im Gras niedriger ist, und zwar nicht unbedeutend als diejenige der darüber liegenden Luftschicht. Die Unterschiede sind so auffallend groß, daß man ihre Ursache nicht allein in den ungleichen Methoden suchen darf. Im Sommer 1899 ist dies viermal, im Sommer 1900 zwölfmal beobachtet worden. In all diesen Fällen, mit Ausnahme von vier (am 16. und 18. August 1899 sowie am 20. und 21. Aug. 1900) ist die absolute Feuchtigkeit indessen größer, bisweilen nicht unbedeutend (z. B. am 6. Juli 1900 um 1,411 mm, am 14. August 1900 um 1,441 mm). Am Boden herrschte dabei eine so hohe Temperatur, daß die relative Feuchtigkeit dadurch niedriger wurde. Die vier anormalen Tage zeigen die ungewöhnliche Abweichung, daß auch die absolute Feuchtigkeit am Boden niedriger sein kann (am 21. August um 0,892 mm, 20. August um 0,725 mm). Da ich nicht glaube, daß dieser Unterschied bloß seinen Grund in einer fehlerhaften Bestimmung des Taupunktes hat, indem auch diese Observationen mit der größten Sorgfalt ausgeführt worden sind, so scheint mir die Behauptung berechtigt zu sein, daß auch am Boden dann und wann eine niedrigere absolute Feuchtigkeit eintreten kann. Ein Vergleich zwischen den gemachten Psykrometer- und Hygrometerbeobachtungen lehnt also, daß die absolute Feuchtigkeit am Boden im Rasen mit seltenen Ausnahmen bedeutend größer ist als in einer Höhe von 1,8 m, und daß im Rasen gewöhnlich die relative Feuchtigkeit auch nicht unerheblich höher ist, im Mittel Sommer 1900 5,6%. Diese Behauptung gilt natürlich bloß für die Mittagsstunden an schönen Sommertagen, weil an anderen Tagen Beobachtungen noch nicht gemacht worden sind.

Kap. V. Einige Bemerkungen über die Humusbildung.

In einem früheren Kapitel ist die Bedeutung des Humus für die Verbreitung vieler Pflanzen erwähnt worden, meine eigenen Untersuchungen sind zwar noch von sehr unbedeutender Art, da aber derartige Untersuchungen von Laubwiesen noch nicht vorliegen, so dürfte ein Bericht meiner Beobachtungen hier seinen Platz finden.

Die Humusbildung ist bekanntlich als eine Oxydation, d. h. als eine Verbrennung der organischen Abfallmassen anzusehen: als Endprodukte zeigen sich dann Wasser, Kohlensäure und Ammoniak. Es entstehen bei diesem Prozeß sehr verschiedene Zwischenbildungen, die Humusarten, die für die Vegetation von eminenter Bedeutung sind. In chemischer Hinsicht sind diese noch so gut wie unerforscht, vorläufig hat man sich dahin ge- einigt, zwei Arten Humus auf trockenem Boden zu unterscheiden, nämlich Mull (müller Humus) und Torf (dänisch: Mor). Da eine Menge Faktoren, wie Temperatur und Feuchtigkeit, das Tier- und Pflanzenleben des Bodens, die chemische Beschaffen- heit der verwesenden Pflanzenteile etc. auf die Humusbildung einwirken, so ist es ganz natürlich, daß eine Reihe verschiedener Zwischenformen dieser zwei Hauptarten in der Natur auftreten. In chemischer Hinsicht unterscheiden sich diese dadurch, daß der Mull neutral reagiert, während der Torf freie organische Säuren, Humin- und Ulminsäure, enthält.

Die sonnenoffenen Wiesen, die durch Geranium silvaticum, Primula officinalis u. a. charakterisiert sind, zeigen gewöhnlich ein Bodenprofil von folgendem Aussehen. Zu oberst befindet sich eine 3—4 cm mächtige Schicht aus ganz zähem Grastorf, der weiter unten mullartig und mit Sand gemischt wird, sich 7—8 cm tief in den Boden erstreckt und 8—9 %

Die Sesteria-Wiesen dagegen geben Anlaß zu einer nicht unbeträchtlichen Torfbildung, die als eine 7—10 cm mächtige Schicht sich von dem darunterliegendem weißen, feinen Sand scharf abgrenzt, der Torf enthält 20—22 %
organische Reste. Der Sand unter dem Sesteria-Torf zeigt keine Farbenverände- rungen in verschiedenen Höhen, hat eine Mächtigkeit von 40—60 cm und ruht auf Ton. In sehr kleinen Mulden in den Kieslagern besteht die Vegetation aus ausgeprägten Hydrophyten, wie Carex vesicaria, Lysimachia vulgaris, Naumburgia thyrsiflora, Lythrum salicaria, Mentha arvensis, Caltha palustris u. a., die eine ganz bedeutende Torfbildung hervorrufen können, die Torfschicht erreicht eine Höhe von 25—30 cm, ist von dem darunterliegenden Sande scharf abgegrenzt und enthält zwischen 85—90 %
organische Bestandteile.
Die Haselstrauch- und Eschenhaine beherbergen eine ausgeprägte Humussflora. Nach den ausgezeichneten Untersuchungen P. E. Müller’s (I) sind sowohl Mull als auch Torf durch ihre spezielle Vegetation gekennzeichnet, und viele Pflanzen können als „Leitpflanzen für Mull, andere für Torf angesehen werden. Der Buchennull hat einen Gehalt von 7—8 % anorganischer Reste, der Buchentorf einen solchen von 30—40 %.

Wenn die Fichte in die Laubwiesen hinein dringt, wird der Boden allmählich von den schwer verwesenden Nadeln bedeckt. Diese werden von Myzelfäden innig miteinander verbunden und bilden eine bis 10 cm dicke Schicht, die den alten, mehr nullartigen Boden bedeckt, in welchem noch die Wurzelsöcke von Anemone nemorosa, Dentaria bulbifera u. a. umherkriechen und einige dünne, bleichgrüne Blätter entwickeln. Wenn in solchen Beständen gelichtet wird, ist dieser Boden sogleich bereit, eine reiche Humussflora aus Anemone nemorosa, Stachys silvatica, Dentaria bulbifera, Milium effusum u. a. zu nähren.

Ein näheres Studium der Humusbildungen und ihrer Flora in den schwedischen Wäldern wäre ohne Zweifel eine sehr
Kap. VI. Lichtbedürfnis der Bäume, Regelung der Sproßbildung und Reinigung der Krone, Lichtgenüß der Pflanzen in verschiedenen Baum- und Strauchbeständen.

Durch die Einführung der Bunsen-Roscoe'schen Lichtmessungsmethode in die Biologie infolge der bekannten Vereinfachungen Wiesner's hat man in der Pflanzengeographie ein wertvolles Mittel gewonnen, ungleiche Pflanzenstandorte in bezug auf den Lichtgenüß ziemlich genau zu charakterisieren; von dem bloßen Schätzen nach Augenmaß ist man ein bedeutendes Stück vorwärts gekommen zu sorgfältigen Messungen. Die Methode stützt sich bekanntlich auf das Schwärzen des Chlorsilbers im Lichte.

Die Strahlen verschiedener Wellenlängen haben aber einen ungleichen, physiologischen Wert, während die Wachstums- und Bewegungsvorgänge (Phototonus, Photomorphosen, Phototropismus, Phototaxis, Plasmabewegungen etc.) und möglicherweise auch die Bildung von Eiweissstoffen (Laurent et Marchal) in erster Linie von den stärker brechbaren Strahlen beeinflußt werden, sind bei der Kohlensäureassimilation hauptsächlich die schwächer brechbaren wirksam. Das Schwärzen des Chlorsilbers stellt jedoch nur einen Spezialfall der chemischen Wirkung des Lichtes dar, es sind hierbei vornehmlich die blauen und violetten Strahlen tätig. Es dürfte bei dem ersten Betrachten scheinen, als ob die Bestimmungen mittels dieser Methode nur einen beschränkten Wert hätten und für die Schätzung der Assimilationsbedingungen gar keine eigentliche Anwendung finden könnten. Unter gewissen Voraussetzungen ist es jedoch möglich, eine Beziehung herauszufinden, was weiter unten dargetan werden soll.

Die verschiedenen Strahlen des Sonnenlichtes finden bekanntlich eine sehr ungleiche Absorption in der Atmosphäre, die längeren Wellenlängen werden viel leichter, die kürzeren weniger leicht durchgelassen: je nach dem Sonnenstande und der Höhe der Atmosphäre hat das Licht also eine ungleiche Zusammensetzung. Die Resultate aus den Bestimmungen der blauen und violetten Strahlen an verschiedenen Punkten der Erde und bei ungleicher Sonnenhöhe lassen also keinen Vergleich zu inbetriff auf das respektive gesamte Tageslicht, was jedoch möglich ist, wenn die Unterschiede in Zusammensetzung des Lichtes innerhalb der Fehlergrenze der Methode zu liegen kommen. Eine Veränderung der Zusammensetzung erleidet auch das Licht beim Durchgang durch pflanzliche Medien: das Licht, welches bereits ein Blatt passiert hat, kann oft z. B. nicht in einem zweiten Stärkebildung erzeugen (Nagamatsz). Man könnte also vermuten, daß das Licht z. B. in dichten Baumbeständen eine andere Zusammensetzung als auf dem freien Felde hätte. Nach
den Untersuchungen, die Wiesner zusammen mit Linßbauer (Wiesner IV pag. 8—13) angestellt hat, beträgt jedoch das durch Absorption und Reflexion veränderte Licht bloß einen verschwindenden Anteil vom gesamten diffusen Licht unterhalb einer Baumkrone, spielt also keine große Rolle. Das direktein-
gestromte diffuse Licht überwiegt nämlich so bedeutend das durch Absorption veränderte, daß letzteres bei den angewandten Methoden übersehen werden kann. Wiesner wendet daher seine Methode an, um das Verhältnis des diffusen Lichtes auf einem Pflanzenstandorte zum gesamten Tageslichte zu bestimmen, welche Bestimmung demnach sowohl für die kürzeren als auch für die längeren Wellenlängen innerhalb der Fehlergrenzen der Methode zulässig ist. Nur wenn der Lichtgenuß im Schatten so tief sinkt, daß er bloß \(\frac{1}{10} \) von dem gesamten Tageslichte beträgt, hat Wiesner eine Veränderung in der Zusammensetzung des Lichtes wahrnehmen können; die Bestimmungen von Lichtstärken unterhalb dieses Wertes sind also immer etwas fehlerhaft.

<table>
<thead>
<tr>
<th>Skabholmen</th>
<th>Wien</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.—15./7.</td>
<td>0,999</td>
</tr>
<tr>
<td>15.—31./7.</td>
<td>0,944</td>
</tr>
<tr>
<td>1.—15./8.</td>
<td>0,823</td>
</tr>
</tbody>
</table>
Aus diesen wenn auch wenigen Beobachtungen geht ganz deutlich hervor, daß die Maxima im Vergleich zu dem Lichtklima Wiens bedeutend zurückstehen. In Wien war das höchste beobachtete Maximum im Juli 1,500, auf Skabbholmen 1,226; nach Wiesner's Berechnungen (V pag. 63) soll die chemische Intensität des Sonnenlichtes in Christiania am 21. Juni 12 ¹⁄₄ bei völlig klarem Wetter 1,150 betragen, ein Wert, der von dem auf Skabbholmen beobachteten nicht wesentlich abweicht.

Der wechselnde Lichtgenuß in den Laubwiesen wird so gut wie ausschließlich durch die Vegetation selbst bestimmt, die Konfiguration des Bodens spielt dabei keine oder nur eine sehr untergeordnete Rolle. Es sind die Bäume und Sträucher selbst mit ihrem ungleichen Lichtbedürfnis, welche die wechselnde Beleuchtung der niedrigen Pflanzen verursachen.

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Skabbholmen</th>
<th>Wien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraxinus excelsior</td>
<td>5,2</td>
<td>6,1</td>
</tr>
<tr>
<td>Sorbus aucuparia</td>
<td>5,2</td>
<td>8</td>
</tr>
<tr>
<td>Betula verrucosa</td>
<td>7,0</td>
<td>8</td>
</tr>
<tr>
<td>Pinus silvestris</td>
<td>9,0</td>
<td>10</td>
</tr>
<tr>
<td>Populus tremula</td>
<td>8,8</td>
<td>—</td>
</tr>
<tr>
<td>Sorbus aucuparia ²)</td>
<td>15,8</td>
<td>—</td>
</tr>
</tbody>
</table>

¹⁾ Bestand aus *P. Laricio* und *nigra*.
²⁾ Sehr schönes Individuum mit einer großen abgerundeten Krone.
Skabhholm. Wien.

\begin{tabular}{ll}
\textit{Acer platanoides} 1) & 1 1 \\
 & 14 17 \\
\textit{Juniperus communis} & 1 1 \\
 & 19 21 \\
\textit{Corylus avellana} 2) & 1 1 \\
 & 18 20 \\
\textit{Quercus robur} 3) & 1 1 \\
 & 19 21 \\
\textit{Picea excelsa} & 1 1 \\
 & 28 33 \\
\end{tabular}

\begin{tabular}{ll}
\textit{Betula verrucosa} 5) & 1 1 \\
 & 5 8 \\
\textit{... odorata} & 1 1 \\
 & 7 8 \\
\textit{Populus tremula} & 1 1 \\
 & 6 8 \\
\textit{Sorbus aucuparia} & 1 1 \\
 & 6 9 \\
\end{tabular}

Daß die Vermehrung der Laubsprosse eines Holzgewächses nicht in den durch die Organisation der letzteren gegebenen geometrischen Verhältnissen vor sich geht, sondern früher oder später eingeschränkt wird, ist schon lange bekannt. Wenn wir

1) Nur kleine, junge Bäume sind untersucht worden.
2) Einzelne stehende Sträucher auf därmem Boden mit lichtem Landwerk.
3) Schöne Individuen in besonders gutem Boden.
4) \textit{Quercus pedunculata}.
5) Sehr schöner, großer Baum.
uns vorstellen, daß ein Baum bei jedem Jahressproß dieselbe Zahl \(p \) Knospen entwickelt, so würde, wenn alle Knospen zur Entwicklung kämen, in \(n \) Jahren die Zahl von Terminal- und Axillarsprossen den Wert von

\[
(p + 1)^{n-1}
\]
treffen, was sich leicht berechnen läßt. Indessen kommen bei weitem nicht alle Knospen zur Entwicklung, die am günstigsten gestellten werden entwickelt, während die anderen früh oder später absterben oder zur Ruhe gehen. Ein Beispiel wird hier aus Wiesner’s Arbeiten entnommen. Ein zehnjähriger Birkenast, der an jedem Sproß nur zwei Axillarsprosse alljährlich erzeugt, müßte 19683 Laubsprosse besitzen, tatsächlich aber wurden nur 238 gezählt. Mit diesem Absterben der Laubsprosse geht ein Einschränken der Zweigordnungen parallel; eine hundertjährige Eiche müßte 99 Zweigordnungen besitzen, tatsächlich aber werden gewöhnlich nur 5–6 beobachtet. (Wiesner IV, p. 71).

Im allgemeinen ist bei unseren Laubwäldern die Zahl der faktisch vorhandenen physiologisch, nicht morphologisch gegebenen¹) Zweigordnungen ganz klein und steht hinter dem, was theoretisch möglich wäre, bedeutend zurück. Die höchste, von mir beobachtete Zahl ist 8, bloß bei durch Baumschnitte geschädigten Individuen ist eine höhere Zahl wahrgenommen worden. Unter den in den Laubwäldern wichtigeren Bäumen sind in den Herbsten 1902 und 1903 die Zahl der Zweigordnungen bei folgenden gezählt worden²):

- Prunus padus — 5,
- Tilia ulmifolia — 6–7,
- Corylus avellana — 6–7,
- Ulmus montana — 6–7 (8),
- Fraxinus excelsior 6–7,
- Betula verrucosa — (6) 7–8,
- Quercus robur — 6–7,
- Acer platanoides — 6–7 (8),
- Alnus glutinosa — 6.

Durch das Einschränken der Zweigordnungen und das Absterben gewisser Knospen und Zweige kommt die für das Ausnutzen des Lichtes geeignete Form der Baumkrone zustande, die wir tatsächlich vorfinden, anstatt des hexenbesengleichen Gewirrs, das entstehen würde, wenn alle Knospen und Sprosse zur Entwicklung kämen. Das Licht ist neben anderen Faktoren dabei in zweifacher Weise nach den Wiesner’schen Untersuchungen wirksam. Teils kommen viele Knospen infolge ungenügender Beleuchtung nie zur Entwicklung, teils wird die normale Weiterentwicklung der Sprosse gehemmt. Weiter tritt

¹) Ein durch sympodiale Verzweigung entstandenes Zweigsystem wird hier als eine Zweigordnung gerechnet.

eine Einschränken der Laubspresse ein durch den morphologischen Aufbau der Sprosse 1), nämlich durch Blütenbildung, sympodiale Verzweigung und anderweitiges Absterben des Haupttriebes bei dekussierter Blatt- und Zweiganordnung.

Von den unten genannten Arten habe ich im allgemeinen eine Mehrzahl Individuen beobachtet, die ein gut übereinstimmendes Ergebnis gegeben haben. Die Assimilationsintensität wurde mit Sach’s Jodprobe bestimmt.

Schon der Ahorn weicht von diesen Bäumen ab, es ist ein gewiß nicht größer, jedoch ganz deutlicher Unterschied zwischen den äußeren und inneren Blättern vorhanden, die letzteren sind nicht so reich an Stärke wie die ersteren. *Alnus glutinosa*, *Pyrus malus* und *Pyrus malus f. mitis* zeigen mit Ahorn übereinstimmende Erscheinungen. Bei *Sorbus aucuparia* werden die Unterschiede schon ausgeprägter: während die äußeren Blätter beim Behandeln mit der Jodprobe metallisch glänzend schwarz gefärbt werden, sind die inneren nur schwärzlich bis matt-schwarz gefärbt. *Quercus robur* kommt diesem Baume sehr nahe, nur sinkt die Assimilationstätigkeit der inneren Blätter noch weiter, indem

1) Vergl. auch Kjellman II.
sie bloß hellgelb oder ledergelb werden, d. h. sie enthalten keine oder sehr wenig Stärke. *Corylus avellana* zeigt dieselben Verhältnisse, wenn auch noch ausgeprägter: eine ganz bedeutende Herabsetzung der Assimilation innerhalb der Krone ist stets zu beobachten, jedoch unter ungleichen Bedingungen mehr oder minder weit fortgeschritten. Bei Sträuchern auf magerem Boden, die noch ziemlich leichtes Laubwerk besitzen, enthalten die inneren Blätter einen nicht unbedeutenden Stärkegehalt, was aber die Haselsträucher auf gutem Boden sich dichter zusammenschließen, geht die Verminderung der Assimilation sehr weit, so daß die innersten Blätter nur wenig oder sogar keine Stärke bilden, während die äußeren immer große Mengen davon aufspeichern. Einige Beispiele mögen dies weiter beleuchten.

Von *Fraxinus excelsior* und *Sorbus aucuparia*, wo auch die innersten Blätter lebhaft assimilieren, gibt es also einen allmählichen Übergang zu *Corylus avellana*, deren innere Blätter fast gar keine oder nur sehr wenig Stärke erzeugen. Die Verschiedenheiten in der Assimilationstätigkeit der Blätter hängen, wie aus den mitgeteilten Daten hervorgeht, auf das innigste mit dem Lichtgenuß im Innern der Kronen zusammen.

Das Absterben gewisser, weniger stark beleuchteter Zweige ist also eine Erscheinung, die bei den ungleichen Bäumen unter sehr verschiedenen, physiologischen Umständen stattfindet; bei der Esche, Eberesche, der Birke, tritt es schon ein, wenn die Blätter noch völlig ernährungstätig sind, bei der Hasel ist dagegen die Assimilationsarbeit stark herabgesetzt.

1) Über die Bedeutung dieser Ausdrücke siehe Näheres im nächsten Kapitel (p. 380).

Derartige Korrelationen dürften in vielen Hinsichten bei dem Aufbau der Baumkrone mitwirken und vielleicht können sie eine Erklärung für das Absterben gut belichteter Sprossen abgeben. In vielen Fällen dürfte es sich auch um Nahrungsströme innerhalb der Krone handeln, und die Verzweigung des Haselstrauch's gibt in dieser Hinsicht sehr wichtige Aufschlüsse. Dieser Strauch hat bekanntlich zwei Arten von Sprossen, nämlich teils ausgeprägt dorsiventrale, mit zweizeilig angeordneten Blättern, die den Hauptteil der Krone bilden, teils orthotrope Sprosse mit radiären Blättern (nach $\frac{1}{3}$). Diese letzteren bilden sich an
der Basis großer Sträucher und fahren fort, den ganzen Sommer hindurch zu wachsen, erst Ende August schließen sie ihre Entwickelung ab; die Blätter werden sehr breit und groß, ihr Assimilationssystem ist aber ganz kümmlich entwickelt (siehe weiter Kap. VIII pag. 403), oft tritt keine Stärkebildung in den Chloroplasen ein. Trotzdem erhalten die Sprosse eine gute Ausbildung und verholzen mit Ausnahme des obersten Teiles genügend, um überwintern zu können und zum Aufbau der Krone beizutragen. Diese erweisen sich deutlich als vom Wurzelsystem und wahr scheinlich auch von den andern Zweigen besonders kräftig ernährte Sprosse. Ihre Entwicklung verläuft indessen bei einem Lichtgenuß von oft bloß \(\frac{1}{50} \) bisweilen noch weniger vom gesamten Tageslicht, bei welchem die übrigen Sprosse verkün mern und deren Blätter nicht ihre volle Größe erreichen, denn schon bei einem Lichtgenuß von \(\frac{1}{30} \) werden diese gehemmt. Es scheint mir dies ein Beweis dafür zu sein, daß bei guter Nahrung (in diesem Fall nur für einen Sproß) die Entwicklung der Organe weniger Licht erfordert, als bei beschränkter Nahrungszufuhr.

Dasselbe finden wir wieder, wenn wir die Bäume und Sträucher auf ungleichen Bodenarten betrachten. Schon die angeführten Beobachtungen lehrten, daß auf gutem Boden die einzelnen Individuen sich dichter stellen und ihre Kronen dichter werden als auf magern. Die Erfahrung der Forstleute und Gärtner geht in derselben Richtung, und Ramann (I pag. 299–300) spricht sich nach einer Darlegung der Bedeutung des Lichtes für den Baum folgendermaßen aus: „Demgegenüber ist nun festzuhalten, daß alle Baumarten sich auf besseren Böden geschlos sener halten, als auf geringeren. Das Maß des Lichteinfalles ist in unseren Gebieten ein sehr einheitliches und nur von der Neigung und Richtung der Flächen abhängig. Würde die Be lichtung maßgebend sein, so müßten sich die Lichthölzarten auch auf den verschiedenen Bodenarten gleichmäßig licht stellen. Es geschieht dies aber nicht. Genügend hieβen ist ohne weiteres zu schließen, daß andere Einwirkungen, sowohl individuelle Ver anlagung, wie auch namentlich die Deckung des Bodenflusses an Wasser und Mineralstoffen von größerer Bedeutung sind als die des Lichteinfalles.“

Nach dem Gesagten ist der vorgefundene Wechsel des Lichtbedürfnisses möglich folgenderweise erklärlich: auf guten, wasser und nahrungsreichen Böden kann das Wurzelsystem leichter einen kräftigen Nahrungsstrom in die Krone emportreiben als auf magern, die Konkurrenz um die Nahrung zwischen den einzelnen Zweigsystemen wird in dem letzten Falle größer und die uner günstig stehenden Zweige gehen früher als auf gutem Boden zugrunde.

Weiter ist, was auch Stahl (II) hervorgehoben hat, in Betracht zu ziehen, daß die Transpirationsbedürfnisse bei der Ent wickelung der Laubkrone von großer Bedeutung sind, bei den
Bäumen mit lichter Belaubung werden auch die im Innern der Krone stehenden Blätter noch genügend durch die Strahlung erwärmt, um im hinreichenden Maße transpirieren zu können und so zu den nötigen Mengen von Nährsalzen zu gelangen. Wenn nun diese Blätter beschattet werden, können sie zwar noch genügend assimilieren, aber sie erhalten zu wenig Licht, um eine genügende Wasserdurchströmung unterhalten zu können. Die Zweige der lichtbedürftigen Bäume vertrocknen daher, nicht etwa, weil die Blätter ungenügend assimilierten, sondern weil sie bei sinkendem Lichtgenüß nicht genügend transpirierten. Diese Theorie ist ohne Zweifel sehr anregend; noch entbehrt man jedoch der nötigen Untersuchungen über die Frage, ob wirklich mit der sinkenden Beleuchtung eine Verminderung des Aschengehalts der Blätter eintritt oder nicht.

Im Frühling ist die Beschattung in den Haselsträucher- und Eschenhainen noch sehr gering, und die unbelaubten Zweige und Stämme lassen der tieferliegenden Vegetation viel Licht zuströmen, doch genießen die Pflanzen nicht das volle Tageslicht, da dieses schon ein wenig gedämpft ist. Am 13. Juni 1902 wurden hierüber mehrere Beobachtungen angestellt. Die Knospen der Haseln waren schon ausgebreitet, aber die nach unten gerichteten, etwas rötlichen, stark zusammengefaßten Blätter waren noch sehr klein, knapp über 1 cm lang. Die Esche blühte schön, die Blattknospen aber waren noch geschlossen; die Traubenkirsche hatte ihre Blätter schon entfaltet, *Ribes alpinum* und *Lonicera xylosteum* dagegen waren völlig belaubt. Es war ein schöner, wolkenloser Tag, um 10 Uhr vorm. betrug die gesamte Lichtintensität einen Wert von 0,780, um 1/212 Uhr 0,953, um 12 Uhr 1,009.

In den lichtesten Teilen des Haselhaines betrug der relative Lichtgenuß $\frac{1}{1,5}$ und unter dem Dach von schwachbelaubten Zweigen war er wechselnd von diesem Wert an bis zu $\frac{1}{2,3}$, letzteres an den dichtesten Stellen, das Mittel von 10 Beobachtungen betrug $\frac{1}{1,7}$, inmitten der größeren Sträucher war das Licht etwas schwächer und wechselte von $\frac{1}{2}$ bis $\frac{1}{3}$. In den Eschenhainen war auch der Lichtgenuß ziemlich variierend, an den offensichtlichsten Punkten betrug er von $\frac{1}{1,2}$, konnte aber auch auf $\frac{1}{2,8}$ sinken, drei verschiedene Bestände wurden untersucht, der erste zeigte im Durchschnitt einen Lichtgenuss von $\frac{1}{1,4}$, der zweite einen solchen von $\frac{1}{1,7}$, der dritte von $\frac{1}{1,8}$.

Die Belaubung der Bäume und Sträucher führt weitgehende Veränderungen im Lichtgenuß mit. Wenn wir zuerst die Eschenhaine in Betracht ziehen, die auf etwas feuchten Standorten in ihren schönsten Formen entwickelt sind, so herrscht in diesen ein bedeutend tieferer Schatten als innerhalb der Laubkronen der freistehenden Bäume, schon an den lichtesten Stellen sinkt

26*
das Lichtminimum auf \(\frac{1}{10.8} \) vom gesamten Tageslicht und in den
dichten Beständen habe ich oft ein Minimum von \(\frac{1}{14} \) beobachtet. Die Blätter an den unteren Zweigen der
Bäume solcher Haine zeigen eine deutliche Herabsetzung der
Assimilationstätigkeit durch einen geringeren Stärkegehalt an
und die kleinen, schwach belaubten und sehr langsam wach-
senden, oft absterbenden Bäume, welche unter den älteren wach-
sen, leiden in hohem Grade durch die Beschattung, indem ihre
Blätter auch an schönen, warmen Sommertagen bloß eine ge-
ringe Stärkebildung zeigen.

Die Belichtungsverhältnisse in den vollbelaubten Haselbe-
ständen sind vielfach und sehr genau studiert worden. Unter
dem Laubbacht, welches die Zweige der verschiedenen mehr
oder minder dichtstehenden Sträucher untereinander bilden, ist
im Durchschnitt ein Mittagsminimum von \(\frac{1}{30} \) beobachtet wor-
den, der höchste beobachtete Lichtgenüß ist \(\frac{1}{27} \); der niedrigste
\(\frac{1}{33} \); aber von diesen Werten an sinkt gegen die Mitte der Sträu-
cher hin das Lichtminimum noch bedeutend, am Fuß der
Stämme beträgt es oft bloß \(\frac{1}{50} - \frac{1}{60} \) vom gesamten Tageslicht,
und in mitten größerer, üppig entwickelter Sträucher sinkt es
bisweilen noch ein wenig mehr.

Die Wacholderbestände zeigen eine sehr wechselnde Beschat-
tung, je nach dem sehr variierenden Habitus des Wacholders.
Bisweilen bestehen die Sträucher aus groben, unten nicht mit
Zweigen besetzten Stämmen, welche von einem Punkt aus sich
nach ungleichen Richtungen hin erstrecken, bisweilen schließen
sich die einzelnen Sträucher dichter zusammen und bilden mit
ihren gröberen und feineren nadelbesetzten Zweigen ein mehr
oder minder dichtes Dach über der Bodenvegetation. In solchen
Beständen ist in der Regel ein Lichtminimum von \(\frac{1}{17} \) beobach-
tet worden, dasselbe kann jedoch auch bis \(\frac{1}{18} \) und \(\frac{1}{27} \) sinken.

Die Fichte weist in den kleinen Beständen, die hier und
da in den Laubwiesen emporwachsen, eine ziemlich wechselnde
Beschattung auf; in Beständen von größeren, ganz kräftigen
Bäumen habe ich inmitten des Bestandes ein Minimum von
\(\frac{1}{24} - \frac{1}{27} \) beobachtet, aber in den kleinen, aus ganz jungen, dicht-
stehenden Individuen bestehenden Gruppen ist das Lichtminimum
am Mittag bedeutend niedriger, $\frac{1}{50} - \frac{1}{60}$ ja bisweilen unter jungen Individuen, welche noch nicht begonnen haben, sich zu reinigen, ist ein noch tieferes beobachtet worden.

Kap. VII. Die Assimilationsintensität auf den sonnenoffenen Wiesen und in verschiedenen Baum- und Strauchbeständen.

Die Stärkebildung ist nach den Untersuchungen von Hans Winkler (I) eine allgemeine Eigenschaft der Chromatophoren der höheren Pflanzen, und wenn eine solche nicht stattfindet, ist die Ursache in den allermeisten Fällen nicht in einer Funktionsunfähigkeit der betreffenden Chloroplasten, sondern in ungenügender Konzentration der erforderlichen Kohlenhydrate zu suchen. Für die Stärkebildung ist weiter die Gegenwart von Sauerstoff und eine nicht zu niedrige Temperatur (siehe z. B. Lidforss I) nötig, wohingegen (Winkler I, pag. 530) das Licht hierbei keine Rolle spielt; auf Zuckerlösungen gelegte, stärkefreie Blätter bilden ebenso leicht Stärke im Dunkeln als im kohlensäure-freien Raum bei Licht.

Für die Beurteilung der Assimilationsarbeit wurde, wie erwähnt, Sachs' Jodprobe im ausgedehnten Maße angewandt. Der
Erfinder (Sachs l. pag. 357) hat auf Grund seiner Erfahrung fünf verschiedene Grade von Farbe und Stärkegehalt unterscheiden, und bei meinen überaus zahlreichen Versuchen ist diese Farbenskala als sehr geeignet erfunden worden, weshalb ich mich derselben ausschließlich bedient habe. Dieselbe ist:

1 = hellgelb oder ledergelb (keine Stärke im Chlorophyll).
2 = schwärzlich (sehr wenig Stärke im Chlorophyll).
3 = mattsschwarz (reichlich Stärke (= Streifen)).
4 = kohlsschwarz (sehr reichlich Stärke im Chlorophyll).
5 = metallisch glänzend schwarz (Maximum des Stärkegehalts).

In zweifelhaften Fällen ist eine mikroskopische Nachprüfung sehr vorteilhaft und diese wird bedeutend erleichtert, wenn die Blätter mit der von Schimpfer (II, pag. 739) vorgeschlagenen Lösung von Jod in einem wässerigen Chloralhydrat (8 Chloral auf 5 Wasser) behandelt werden; hierdurch werden sie ganz klar und durchscheinend, und es legen sich keine Schwierigkeiten in den Weg, diese auch bei ganz starker Vergrößerung zu untersuchen; bei den so behandelten Blättern kann man die Verteilung und Größe der Stärkekörner in verschiedenen Teilen der Blätter genau beobachten.

Über 1000 besondere Versuche mit ungefähr 8-9000 Blättern wurden in verschiedenen Teilen der Vegetationsperiode gemacht und lieferten, soweit die Methode dies zu geben imstande ist, ein unerwartetes Bild von der sehr ungleichen Assimilation an verschiedenen Lokalitäten.

Die Schlüsse, welche man bei Anwendung der Jodprobe ziehen kann, leiden aus zwei Gründen an einer Beschränkung. Wie oben hervorgehoben worden ist, sind nicht alle Pflanzenarten in demselben Grade für Stärkebildung geneigt, einige bil- den sehr leicht Stärke, andere dagegen weniger leicht. Ein Vergleich der Assimilationsenergie zwischen verschiedenen Arten auf Grund der Stärkeuntersuchungen ist daher als unberechtigt zu betrachten, wenigstens erfordern derartige Schlüsse große Vorsicht; indessen tut diese Methode gute Dienste, wenn man nur dieselbe Art unter verschiedenen äußeren Bedingungen untersuchen will. Eine weitere Einschränkung erleidet diese Methode dadurch, daß man nur den Überschuß der Assimilaten mit Hinsicht auf das stetige Abführen derselben bestimmt, denn solange sich eine Pflanze in Entwicklung befindet, werden, wenn die Temperatur nicht zu niedrig ist, ohne Unterbrechung lösliche Kohlenhydrate aus den Blättern abgeführt. Die Jodprobe liefert daher kein direktes Maß für die während des Tages gebildeten Assimilaten, beleuchtet aber in ganz eminenter Weise die Nahrungsbedingungen der untersuchten Pflanze. Wenn wir z. B. finden, daß eine Art auf gut belichteten Standorten reichlich Stärke bildet, an von Bäumen und Sträuchern stark beschatteten keine oder nur sehr wenig, so können wir daraus schließen, daß im ersten Falle genügend viele Assimilaten entstehen, um den abführenden
Strom zu übertreffen und für die Nachtstunden einen Überschuß zu liefern; im zweiten Falle, wenn die Pflanze noch der Entwicklung fähig ist, übertrifft höchstens die Neubildung der Assimilate die Abfuhr derselben und den Verbrauch bei der Atmung mit einem Konzentrationsmaß, das für Stärkebildung noch nicht groß genug ist.

Zur Bestimmung der Menge der löslichen Kohlenhydrate wurde Fehling's Gemisch angewendet, da aber diese Methode sehr zeitraubend ist und die Zuckerpflanzen, was die Artenzahl betrifft, in der Vegetation der Laubwiesen sehr zurücktreten, so ist dieselbe nur in beschränktem Maße angewendet worden. Es befinden sich nämlich unter den von mir untersuchten Arten bloß vier, die in der Natur stets nur löschliche Kohlenhydrate in den Assimilationszellen aufspieichern und nie zur Abscheidung von Stärke in den Chloroplasten kommen, nämlich Allium ur- sinum, Polygonatum officinale und Pol. multiflorum, Milium effusum: die andern bilden alle mehr oder minder gern Stärke.

Eine wirklich exakte Darstellung der Assimilationsenergie der Pflanzen an verschiedenen, natürlichen Standorten ist wohl mit den jetzt bekannten, physiologischen Methoden so gut wie unmöglich. Es sollte sich dies sicherlich am besten durch eine Untersuchung des Gaswechsels bei der Assimilation ausführen lassen, aber mit den jetzt gebräuchlichen Apparaten stößt eine derartige Untersuchung auf fast unüberwindliche Schwierigkeiten. Zwecks Lösung einiger Fragen ist aber doch eine euclidometrische Untersuchung der Assimilationsfähigkeit vorgenommen worden, wie am Schluß dieses Kapitels darzutun wird.

In bezug auf den Lichtgenüß der Pflanzen gibt es in den Laubwiesen drei verschiedene Typen von Standorten, nämlich
1. die offenen Wiesen, die den ganzen Sommer hindurch das gesamte Tageslicht fast oder völlig vollständig genießen; 2. die Bestände aus Laubbäumen, wo im Frühling das Licht ziemlich ungehindert Zutritt hat, wo aber im Sommer der Schatten mehr oder minder stark wird und 3. die Bestände aus Nadelhölzern mit immergrünen Blättern, wo das Licht stets abgeschwächt ist.

| Wiese | Hasel- | Eschen- | Wiese | Hasel- | Eschen-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea millefolium</td>
<td>4</td>
<td>4</td>
<td>Hypochoeris maculata</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Actaea spicata</td>
<td>5</td>
<td>4-5</td>
<td>5</td>
<td>Lasera pumila latifolia</td>
<td>1-2</td>
</tr>
<tr>
<td>Adoxa moschatellina</td>
<td>3-4</td>
<td>3-4</td>
<td>4</td>
<td>Lobelia xylotoma</td>
<td>4-5</td>
</tr>
<tr>
<td>Anemone hepatica</td>
<td>4</td>
<td>4-5</td>
<td>5</td>
<td>Majanthemum bifolium</td>
<td>1-2</td>
</tr>
<tr>
<td>nemorosa</td>
<td>4</td>
<td>5-4</td>
<td>5-4</td>
<td>Melandrium rubrum</td>
<td>4</td>
</tr>
<tr>
<td>Anthericum silvestreis</td>
<td>4</td>
<td>3-4</td>
<td>4</td>
<td>Melica nutans</td>
<td>-</td>
</tr>
<tr>
<td>Arenaria trimera</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>Mercurialis perennis</td>
<td>2-3</td>
</tr>
<tr>
<td>Iris vomeraria</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Myriophyllum sibirica</td>
<td>4</td>
</tr>
<tr>
<td>Cetrnovia heterophylla</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Origanum vulgare</td>
<td>-</td>
</tr>
<tr>
<td>Cordaites magalis</td>
<td>2</td>
<td>2-3</td>
<td>3</td>
<td>Paris quadrifolia</td>
<td>1-2</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>Poa nemoralis</td>
<td>-</td>
</tr>
<tr>
<td>Daphnc mezerena</td>
<td>2-3</td>
<td>2-3</td>
<td>3</td>
<td>Primula farinosa</td>
<td>4-5</td>
</tr>
<tr>
<td>Dentaria bulbifera</td>
<td>5</td>
<td>5</td>
<td>-</td>
<td>Primula officinalis</td>
<td>4</td>
</tr>
<tr>
<td>Deschampsia caespitosa</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Prunus padus</td>
<td>5</td>
</tr>
<tr>
<td>Fragaria vesca</td>
<td>5</td>
<td>5-5</td>
<td>5</td>
<td>Ranunculus auricomus</td>
<td>-</td>
</tr>
<tr>
<td>Geranium robertianum</td>
<td>4</td>
<td>5-5</td>
<td>5</td>
<td>Ribes sanguineum</td>
<td>4-5</td>
</tr>
<tr>
<td>" sanguineum</td>
<td>4-5</td>
<td>5-5</td>
<td>5</td>
<td>Rubia alepina</td>
<td>5</td>
</tr>
<tr>
<td>Geum rivale</td>
<td>4</td>
<td>4</td>
<td>-</td>
<td>Rumex acetosa</td>
<td>4-5</td>
</tr>
<tr>
<td>" urbanum</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>Sesleria coerulea</td>
<td>4</td>
</tr>
<tr>
<td>Glechoma hederacea</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>Veronica chamadrys</td>
<td>5</td>
</tr>
<tr>
<td>Heracleum sibiricum</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>Viburnum opulus</td>
<td>4-5</td>
</tr>
<tr>
<td>Hypericum quadrangulatum</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>Viola hirta</td>
<td>4</td>
</tr>
</tbody>
</table>

Aus diesen Beobachtungen geht sehr deutlich hervor, daß im Frühling, so lange die Laubbäume noch kahl sind, die im Schatten wachsenden Gräser, Kräuter und Stauden sehr lebhaft assimilieren und große Mengen von Stärke in den Assimilationszellen aufspeichern. Die Vegetation befindet sich da in sehr reger Wirksamkeit, sowohl auf den sonnenoffenen Wiesen als auch in den noch unbebaubten Strauch- und Baumbeständen. Vollkommen übereinstimmende Resultate lieferten ähnliche Unter-
suchten am 13. Juni 1900, einem schönen, warmen Frühlings-
tage mit heiterem, fast wolkenlosem Himmel, Temp. am Mittag 14 °.
Nur unter den Haselsträuchern, deren Blätter schon entwickelt,
aber noch sehr klein waren, wurden diesmal die zu prüfenden
Objekte eingesammelt. Folgende Pflanzen wurden untersucht:

Actaea spicata 4—5.
Adoxa moschatellina 4—5.
Amenonem hepatica 4—5.
(...) nemorosa 4.
Convallaria majalis 2—3.
Dentaria bulbifera 5.
Geranium silvaticum 4—5.
Laspeiria latifolia 1—2.

Mercurialis perennis 4—5.
Polystichum flex mum 4—5.
Prionula officinalis 4.
Rubus saxatilis 4—5.
Ribes alpinum 5.
Solidago virgaurea 4.
Spiraea alnaria 5.
Trientalis europaea 4.

Das Schätzen des Stärkegehalts der Blätter mittels Sachs’
Jodprobe ist natürlich nicht vollständig exakt, es können trotz
der gleichen Farben kleine Unterschiede existieren; z. B. inbe-
zug auf die Größe der Stärkekörner. Eine genauere Unter-
suchung mit dem Mikroskop ist daher in vielen Fällen ratsam
und auch dann, wenn die Blätter mittels Chloralhydrats durch-
scheinend gemacht sind, ganz leicht auszuführen. Bei einer der-
artigen mikroskopischen Nachprüfung von den am 13. Juni 1900
und 1902 eingesammelten Blättern hat es sich gezeigt, daß im
allgemeinen der Stärkegehalt der besonnten Blätter etwas
großer ist als der Gehalt der beschatteten, z. B. bei _Geranium
silvaticum, Spiraea alnaria, Solidago virgaurea, Anthriscus silves-
tris_, ja sogar bei _Daphne mezereum, Amenonem nemorosa und
Actaea spicata. Nur sehr wenige Schattenblätter wiesen einen
größeren Stärkegehalt als respektive Sonnenblätter auf und zwar
bei drei _Convallariaceen_, nämlich _Paris quadrifolia, Majanthemum
bifolium_ und _Convallaria majalis_.

Die Entwicklung des Laubes an den Bäumen und Strän-
chern und der dadurch sinkende Lichtgenuß der Pflanzen ver-
ursacht sehr bedeutende Veränderungen in der Ernährungsarbeit
der im Schatten wachsenden Pflanzen. Wie tiefgreifend diese
Veränderungen sind, läßt sich am besten durch die _Erscheinungen
betigen ausgeprägten Schattenpflanzen illustrieren._

Dentaria bulbifera.
13.6.1900. Die Blätter des Haselstranges sehr klein, Himmel unbe-
wölkt. Temp. am Mittag 14°.
Sonnenoffener Standort — 5.
Unter den Haselsträuchern — 5.

23.6.1900. Die Zweige des Haselstranges noch nicht völlig belaubt,
die Blätter zwar groß, aber noch nicht völlig entwickelt. Temp. um 2 Uhr
nachm. 16°, um 9 Uhr abends 9°°. Heiter.
Sonnenoffener Standort — 5.
Unter den Haselsträuchern — 3.

12.6.1901. Die Blätter des Haselstranges schon ziemlich groß, die
Belaubung bei weitem noch nicht vollständig. Temp. um 2 Uhr 12°.
um 9 Uhr 9°. Am Mittag etwas bewölkt, am Nachmittag heiter.
Sonnenoffener Standort — 5.
Unter den Haselsträuchern — 3—4.

Temp. um 2 Uhr 14°, um 9 Uhr 9°°. Heiteres Wetter den ganzen Tag.
Sonnenoffener Standort — 5.
Unter den Haselsträuchern — 3.
Sonnenoffener Standort — 5.
Unter den Haselsträuchern — 1.
Sonnenoffener Standort — 4—5.
Unter den Haselsträuchern — 1, nur in den äußersten Spitzen der Blattlappen ein wenig Stärke.
Actaea spicata.
Sonnenoffener Standort — 5.
Unter den Haselsträuchern — 4—5.
25.6. 1900. Siehe oben.
Sonnenoffener Standort — 5.
Unter den Haselsträuchern — 4.
2.7. 1900. Die Haselsträucher beinahe vollständig belaubt. Temp. 2 Uhr 17°3, um 9.30 Uhr 15°0. Den ganzen Tag heiterer Himmel.
Sonnenoffener Standort — 5.
Sonnenoffener Standort — 5.
Unter den Haselsträuchern: Nur die Stärkescheiden um die Leitbündel führen Stärke, das Mesophyll iststärkefrei.
2.7. 1901. Die Haselsträucher sind völlig belaubt. Temp. um 2 Uhr 17°8, um 9 Uhr 10 m 12°2. Der Himmel den ganzen Tag heiter.
28.7. 1899. Um 2 Uhr 17°5, um 9 Uhr 12°1. Um 8 Uhr vormittags war der Himmel bewölkter, mittags und nachmittags heiter.
Unter den Haselsträuchern: keine Stärke oder nur sehr wenig im Mesophyll, die Nerven treten als schwarzblaue Adern hervor.
Daphne mezereum.
25.6. 1900. Siehe oben.
Sonnenoffener Standort — 2—3.
Unter den Haselsträuchern — 2.
29.6. 1901. Siehe oben.
Sonnenoffener Standort — 3.
Unter den Haselsträuchern — 1.
2.7. 1901. Siehe oben.
Sonnenoffener Standort — 3—5.
Unter den Haselsträuchern — 1.
Mit der Entwicklung des Laubes der Haselsträucher tritt auch sogar bei ziemlich ausgeprägten Schattenpflanzen eine bedeutende Herabsetzung der Assimilation ein. Individuen, die im Frühling ganz erhebliche Mengen von Stärke in den Assimilationszellen aufspeichern, bilden nun sehr wenig oder gar keine. Sehr bedeutend sind ja auch die Veränderungen im Lichtgenuß, die sich nun vollzogen haben; im Frühling betrug der Lichtgenuß einen ganz hohen Wert, nämlich im Durchschnitt $\frac{1}{17}$ zwischen den Haselsträuchern und unter denselben wechselte er von $\frac{1}{2} - \frac{1}{3}$, das direkte Sonnenlicht tritt da reichlich hinein, von den unbeblaubten Stämmen und Zweigen kaum gehindert. Wenn dagegen die Belaubung völlig entwickelt ist, spielen bloß kleine bleiche Sonnenflecke hin und wieder über den Boden, das diffusse Licht ist ganz überwiegend und dieses ist noch dazu bedeutend abgeschwächt. Der Lichtgenuß der Pflanzen zur Mittagszeit beträgt nun bloß $\frac{1}{17} - \frac{1}{18}$; ja sogar nur $\frac{1}{20}$, von dem, was sie im Frühling empfangen haben; an den lichtesten Stellen des Haselhains ist der Lichtgenuß $\frac{1}{27} - \frac{1}{33}$ vom gesamten Tageslichte, an den am meisten beschatteten $\frac{1}{60} - \frac{1}{65}$. In den Eschenhainen sind die Veränderungen auch ganz bedeutend, wenn auch nicht so ausgeprägt, wie in den Haselhainen, die Entwicklung des Laubes bedeutet hier eine Herabsetzung des Lichtgenusses zu $\frac{1}{10}$ des Frühlingslichtes.

Diese Veränderungen im Lichtgenüß greifen bei den meisten Pflanzen mächtig in ihre Ernährungsarbeit ein und eine Untersuchung mittels der Jodprobe über die Assimilationsintensität liefert nun ein ganz anderes Ergebnis als im Frühling.

Zuuerst werden hier einige Beobachtungen vom 2. Juli 1900 angeführt, die Haselsträucher waren erst seit kurzem belaubt, die Esche hatte gewiß schon entfaltete Blätter, dieselben waren aber noch nicht überall völlig entwickelt. In den Haselhainen wurden die Blätter in den am meisten geschlossenen Teilen gesammelt, wo am 13. Juni eine sehr lebhafe Assimilation wahrgenommen worden war. Temp. um 2 Uhr 17°3, um 9 Uhr 30° M. 15°0, der Himmel den ganzen Tag heiter.

Unter den Haselsträuchern:

- *Actaea spicata* 2.
- *Convallaria majalis* 3.
- *Daphne mezereum* 1.
- *Geranium sylvaticum* 2.
- *Geum rivale* 1–2.
- *Lacrypitum latifolium* 1.
- *Lonicera xylosteum* 2.
- *Myrtillus nigra* 1.

- *Mercurialis perennis* 2.
- *Polystichum filix mas* 2–3.
- *Primula officinalis* 2.
- *Ribes alpinum* 3.
- *Rubus saxatilis* 2.
- *Solidago virgaurea* 1–2.
- *Spiraea ulmaria* 2–3.
- *Tridentalis europaea* 4.
- *Veronica chamaedrys* 1–2.
Unter den Eschen:

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actaea spicata</td>
<td>2—4.</td>
</tr>
<tr>
<td>Anemone hepatica</td>
<td>4.</td>
</tr>
<tr>
<td>Anthriscus silestris</td>
<td>2—3.</td>
</tr>
<tr>
<td>Heracleum sibiricum</td>
<td>2.</td>
</tr>
<tr>
<td>Mercurialis perennis</td>
<td>3.</td>
</tr>
<tr>
<td>Primula officinalis</td>
<td>1.</td>
</tr>
<tr>
<td>Primus padus</td>
<td>3.</td>
</tr>
<tr>
<td>Ranunculus caesibicus</td>
<td>3.</td>
</tr>
<tr>
<td>Sorbus aucuparia</td>
<td>3.</td>
</tr>
<tr>
<td>Stachys silvatica</td>
<td>3—4.</td>
</tr>
</tbody>
</table>

Noch mehr interessant in dieser Hinsicht sind einige Beobachtungen, auf Lidö am 12 Juli 1900 gemacht. Hier wurde am Einsammungstag sowohl das gesamte Tageslicht als auch der relative Lichtgenuß an verschiedenen Standorten bestimmt. Temp. um 2 Uhr 25°, um 9 Uhr 13°, der Himmel den ganzen Tag heiter, um 11 h 30 m. war die Lichtintensität auf dem freien Felde 1,009.

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alchemilla vulgaris</td>
<td>4.</td>
</tr>
<tr>
<td>Anemone hepatica</td>
<td>4.</td>
</tr>
<tr>
<td>Campanula persicaefolia</td>
<td>2.</td>
</tr>
<tr>
<td>Convallaria majalis</td>
<td>3—4.</td>
</tr>
<tr>
<td>Geranium silvaticum</td>
<td>2.</td>
</tr>
<tr>
<td>Geum rivale</td>
<td>2—3.</td>
</tr>
<tr>
<td>Laserpitium latifolium</td>
<td>1.</td>
</tr>
<tr>
<td>Oxalis acetosella</td>
<td>5.</td>
</tr>
<tr>
<td>Primula officinalis</td>
<td>2.</td>
</tr>
<tr>
<td>Ranunculus aquamnus</td>
<td>1.</td>
</tr>
<tr>
<td>Veronica chamaedrys</td>
<td>2.</td>
</tr>
<tr>
<td>Viola riviniana</td>
<td>2.</td>
</tr>
</tbody>
</table>

Nr. II. Bodenvegetation mehr spärlich, nicht geschlossen, Blätter und vermodernde Zweige bedecken den Boden, rel. Lichtgenuß 1 1 32—35°

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemone hepatica</td>
<td>4.</td>
</tr>
<tr>
<td>Melampyrum nemorosum</td>
<td>2.</td>
</tr>
<tr>
<td>silvaticum</td>
<td>2—3.</td>
</tr>
<tr>
<td>Primula officinalis</td>
<td>2.</td>
</tr>
<tr>
<td>Parus quadrifolia</td>
<td>2.</td>
</tr>
<tr>
<td>Poa nemoralis</td>
<td>1.</td>
</tr>
<tr>
<td>Veronica chamaedrys</td>
<td>2.</td>
</tr>
<tr>
<td>Majanthemum bifolium</td>
<td>1.</td>
</tr>
</tbody>
</table>

Nr. III. Bodenbedeckung aus modernden Blättern, Zweigen, etc. Sehr spärliche Kräuter. Rel. Lichtgenuß 1 54°

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemone hepatica</td>
<td>2.</td>
</tr>
<tr>
<td>Melampyrum nemorosum</td>
<td>1.</td>
</tr>
<tr>
<td>silvaticum</td>
<td>2—3.</td>
</tr>
<tr>
<td>Majanthemum bifolium</td>
<td>1.</td>
</tr>
</tbody>
</table>

Nr. IV. Bodenbedeckung aus moderigen Blättern und Zweigen. Rel. Lichtgenuß 1 59°

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melampyrum silvaticum</td>
<td>1.</td>
</tr>
<tr>
<td>Veronica chamaedrys</td>
<td>1.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actaea spicata</td>
<td>1—2.</td>
</tr>
<tr>
<td>Anemone hepatica</td>
<td>1.</td>
</tr>
<tr>
<td>Daphne mezereum</td>
<td>1.</td>
</tr>
<tr>
<td>Geranium silvaticum</td>
<td>2.</td>
</tr>
<tr>
<td>Geum rivale</td>
<td>1—2.</td>
</tr>
<tr>
<td>Laserpitum latifolium</td>
<td>1.</td>
</tr>
<tr>
<td>Primula officinalis</td>
<td>1.</td>
</tr>
<tr>
<td>Rubus saxatillis</td>
<td>1.</td>
</tr>
<tr>
<td>Spiraea ulmaria</td>
<td>2—3.</td>
</tr>
</tbody>
</table>

Es würde zu weit führen, wollte ich alle meine Beobachtungen auf Skabbholmen mitteilen. Ganz übereinstimmende Resultate haben die Untersuchungen in bezug auf die aus Erlen, Eschen, Wacholder, Traubenkirsche, Viburnum opulus, Khamnus franchetii u. a. bestehenden Baumgruppen geliefert; in deren Inneren kann der relative Lichtgenuss auf einen ziemlich niederen Wert, 130 herabsinken.

Diese in vielen Hinsichten unerwarteten Ergebnisse erhalten durch die Beobachtungen, die von mir in der früher erwähnten Laubwiese bei Ström im Kirchspiel Österåker gemacht worden sind, eine gute Bestätigung. Daß sie nicht bloß ein Zufall sind, sondern in der Tat einen ziemlich allgemeingültigen Ausdruck für den Kampf um Licht und Nahrung, den die Pflanzen in unseren Laubwiesen miteinander führen, darstellen, ist ersichtlich.

<table>
<thead>
<tr>
<th>Lichtoffene Wiesen</th>
<th>Geschlossene Bestände</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actaea spicata 1—2.</td>
<td>2</td>
</tr>
<tr>
<td>Anemone hepatica 2—3.</td>
<td>2</td>
</tr>
<tr>
<td>Anemone nemorosa</td>
<td>1</td>
</tr>
<tr>
<td>Asplenium filix femina 5</td>
<td>2—3</td>
</tr>
<tr>
<td>Campanula latifolia 4</td>
<td>1</td>
</tr>
<tr>
<td>Corylus avellana 4—5</td>
<td>1—2</td>
</tr>
<tr>
<td>Dentaria bulbifera</td>
<td>1—2</td>
</tr>
<tr>
<td>Geranium silvaticum 4—5</td>
<td>2—3</td>
</tr>
<tr>
<td>Geum rivale</td>
<td>1—2</td>
</tr>
<tr>
<td>Lathyrus pratensis</td>
<td>1—2</td>
</tr>
</tbody>
</table>

15. Aug. 1900. Eschenhain. Rel. Lichtgenuss 1—1. Temp. um 2 Uhr 214, um 9 Uhr 160. Der Himmel den ganzen Tag heiter.

zuweilen breiter und länger, als sie bei den Formen derselben Art auf sonnenoffenen Standorten sind. Der Lichtgenüß wechselt ganz bedeutend: in älteren Beständen, wo schon ein Absterben der unteren Zweige begonnen hat, beträgt er \(\frac{1}{24} - \frac{1}{27} \)
in dichteren sinkt er bis zu \(\frac{1}{50} - \frac{1}{60} \). und in sehr dichten, aus ganz jungen Individuen bestehenden Baumbeständen kann der Lichtgenüß sogar nur \(\frac{1}{90} \) des gesamten Tageslichtes betragen.

Im allgemeinen genießt jedoch die Pflanzen ungefähr dasselbe Licht wie in den dichteren, vollbelaubten Haselbeständen. Folgende Beobachtungen wurden in Fichtenhainen in den Sommern 1900 und 1901 gemacht.

52. Juni 1900. Temp. um 2 Uhr 16°0, um 9 Uhr 9°6. Der Tag heiter bis fast heiter. In ziemlich tiefem Schatten einer Fichte.

- **Dentaria bulbifera 2.**
- **Rubus saxatilis 1.**
- **Anemone nemorosa 1.**

29. Juni 1900. Temp. 2 Uhr 19°3, um 9 Uhr 15°0. Heiter.

- **Anemone nemorosa 1.**
- **Luzula pilosa 2—3.**
- **Cornusca majalis 3.**
- **Solidago virgaurea 2.**
- **Dentaria bulbifera 2—3.**
- **Tridentis europaea 3—4.**

Die Untersuchungssubjekte wurden diesmal in verschiedenen Fichtenbeständen gesammelt.

29. Juni 1901. Temp. 2 Uhr 16°3, um 11 Uhr n. M. 11°0. Maximum 17°0.

Nr. I. Bestand aus jungen Fichten, die dicht nebeneinander in einem Espenhain emporschließen. Der Boden ohne jede Moosvegetation bedeckt mit Nadeln und ver Faulenden Espenblättern. Die jungen Bäume mit vielen toten, noch zurückbleibenden Zweigen behaftet. **Ribes alpinum** absterbend, alle Kräuter steril, die Blätter des Maiglöckchens haben ihre normale Größe nicht erreicht, sondern sind bedeutend kürzer und schmäler als gewöhnlich, im allgemeinen ist bloß ein einziges Blatt von jedem Wurzelstockprobf entwickelt. Relativer Lichtgenüß. \(\frac{1}{90} \) (?).

- **Anemone nemorosa 1.**
- **Myrtillus nigra 1—2.**
- **Cornusca majalis 1.**
- **Ribes alpinum 1—2.**
- **Dentaria bulbifera 1—2.**

Nr. II. Fichtenbestand von gleicher Beschaffenheit. Die Bäume etwas älter. **Ribes alpinum** absterbend. Relativer Lichtgenüß. \(\frac{1}{90} \)

Ribes alpinum 1.

Nr. III. Fichtenbestand aus älteren bis 30jährigen Bäumen bestehend, in einem Espenhain emporgewachsen. Der Boden ist ohne Moosvegetation und mit Nadeln sowie verwesenden Blättern bedeckt. Spärliche, nur sterile Kräuter. Von den Sträuchern **Ribes alpinum** und **Lonicerä xylosteum** sind große Zweigsysteme abgestorben. **Dentaria bulbifera** ist steril, gewöhnlich sind aus den Wurzelstöcken nur einige einzelne, sehr breite Blätter entwickelt. Relativer Lichtgenüß inmitten des Bestandes = \(\frac{1}{47} \) zwischen den Bäumen, wo **Ribes alpinum** und **Lonicerä xylosteum** reichlich belaubte Zweige entwickelt haben, \(\frac{1}{22} \)

- **Anemone nemorosa 1.**
Deutzia pulchiflora, Wurzelblätter 2, Stengelblätter 3.

Lonicera xylosteum 3.
Ribes alpinum 1–2.

Actaea spicata 2–3.
Convallaria majalis 3.
Deutzia pulchiflora 2.
Hypericum quadrangulum 1.

Anemone nemorosa 1.
Lonicera xylosteum 2–3.
Ribes alpinum 3–4.

Anemone hepatica 2.
Anemone nemorosa 1.
Melampyrum pratense 1.
Lucula pilosa 1–3.

Actaea spicata 2–3.
Anemone nemorosa 1.
Convallaria majalis 3–4.
Daphne mezereum 1.
Myrtillus niger 1–2.

Prunus saxatilis 2.
Ribes alpinum 2–3.
Rubus saxatilis 2–3.

Was nun die Wacholderbestände anbetrifft, die in den Laubwiesen, besonders auf Skabholmen, eine nicht unwichtige
Rolle spielen, so finden wir hier ähnliche Verhältnisse, wie in den Fichtenbeständen wieder, hier ist die Vegetation die ganze Vegetationsperiode hindurch mehr oder minder beschattet, die Abschwächung des Lichtes aber geht nicht so weit wie in jenen Pflanzenformationen. Die über die Stärkebildung gemachten, nicht besonders zahlreichen Beobachtungen zeigen einen mit sinkender Lichtintensität abnehmenden Stärkegehalt, da aber die Beschattung in diesen Beständen nicht besonders weit geht — nur bis zu \(\frac{1}{17} - \frac{1}{27} \) des gesamten Tageslichtes — und das Licht infolge der sehr unregelmäßigen Verzweigung des Wacholders sehr wechselt, so geht die Herabsetzung in der Assimilationstätigkeit nicht so weit wie in jenen. Bei Geranium sanguineum, Rubus idaeus und einigen anderen ist eine Abschwächung bis zum vollständigen Fehlen der Stärke wahrgenommen worden, und viele andere, wie Silene nutans, Veronica chamaedrys, Galium boreale, Ribes alpinum, Campanula rotundifolia, haben deutlich im Vergleich mit den Individuen der sonnenoffenen Standorte schwächere Nahrungsbedingungen gezeigt.

Ein ganz anderes Bild von Stoffbildung und Ernährungsarbeit geben die Pflanzen ab, die die sonnenoffenen Wiesen zusammensetzen oder am Rande der Bestände wachsen. Es gibt, wie oft erwähnt, eine sehr ungleiche Neigung zur Stärkebildung und viele Pflanzen, die hierfür einen hohen osmotischen Druck in den Zellen erfordern, sind auch unter so guten Assimilationsbedingungen, wie die sonnenoffenen Wiesen darbieten, mehr oder weniger stärkearm und erreichen nur selten das Maximum des Stärkegehalts. Es ist nicht meine Absicht auf diese Schwierigkeiten jetzt einzugehen, sondern ich begnüge mich damit, eine tabellarische Übersicht über die gewöhnliche Stärkeaufspeicherung am Abend bei den Pflanzen, die von mir in dieser Hinsicht vielfach untersucht worden sind, mitzuteilen.

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Stärkegehalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geum rivale 4</td>
<td>1</td>
</tr>
<tr>
<td>Glechoma hederacea 4</td>
<td>1</td>
</tr>
<tr>
<td>Hareculum sibiricum 4</td>
<td>1</td>
</tr>
<tr>
<td>Hieracium sp. 4</td>
<td>1</td>
</tr>
<tr>
<td>Hypochaeris maculata 4</td>
<td>1</td>
</tr>
<tr>
<td>Hypericum quadrangulum 4</td>
<td>1</td>
</tr>
<tr>
<td>Laeseriptium latifolium 4—5</td>
<td>1</td>
</tr>
<tr>
<td>Lathyrus pratensis 4—5</td>
<td>1</td>
</tr>
<tr>
<td>Luzula pilosa 5</td>
<td>1</td>
</tr>
<tr>
<td>Majanthemum bifolium 2</td>
<td>1</td>
</tr>
<tr>
<td>Melandrium rubrum 4</td>
<td>1</td>
</tr>
<tr>
<td>Mercurialis perennis 3—5</td>
<td>1</td>
</tr>
<tr>
<td>Myrtillus nigra 4—5</td>
<td>1</td>
</tr>
<tr>
<td>Origanum vulgare 4—5</td>
<td>1</td>
</tr>
<tr>
<td>Orosus cornus 4—5</td>
<td>1</td>
</tr>
<tr>
<td>Plantago lanceolata 4—5</td>
<td>1</td>
</tr>
<tr>
<td>Polygellum filix mas 5</td>
<td>1</td>
</tr>
<tr>
<td>spinaulosum 5</td>
<td>1</td>
</tr>
<tr>
<td>Potentilla erecta 5</td>
<td>1</td>
</tr>
<tr>
<td>cerasa 5</td>
<td>1</td>
</tr>
<tr>
<td>Primula farinosa 3—5</td>
<td>1</td>
</tr>
<tr>
<td>officinalis 4—5</td>
<td>1</td>
</tr>
</tbody>
</table>

Beihefte Bot. Centralbl. Bd. XVII. 1904. 27
Dasselbe Resultat haben auch meine Untersuchungen über die Bäume und Sträucher geliefert, am Abend sind die assimilierenden Zellen beinahe strotzend mit Stärke gefüllt.

Die im vorhergehenden geschilderten Ergebnisse können nebst meinen übrigen Beobachtungen über die Assimilationstätigkeit in folgender Weise zusammengestellt werden.

I. Unter den vollbelaubten, stärker geschlossenen Haselsträuchern bilden folgende Pflanzen keine oder nur sehr wenig Stärke.

a) Pflanzen, die unter guten Assimilationsbedingungen für gewöhnlich sehr reichlich Stärke bilden. (Gehalt 4—5).

Achillea millefolium, Arenaria trinervia, Berberis vulgaris, Dentaria bulbifera, Geranium sanguineum, Geum rivale, Geum urbanum, Hypericum quadrangulum, Laserpitium latifolium, Lathyrus pratensis, Melampyrum nummarum, Myrtillus nigra, Primula officinalis, Prunus padus, Rubus idaeus, Rubus saxatilis, Solidago virgaurea, Veronica officinalis, Veronica chamaedrys, Vicia sepium.

b) Pflanzen, die nie oder nur selten das Maximum des Stärkegehalts in den Assimilationszellen erreichen, jedoch unter guten Bedingungen nicht unbeträchtlich viel, bisweilen sogar sehr viel Stärke bilden.

Anthriscus silvestris, Campanula latifolia, Camp. persicaefolia, Daphne mezereum, Melica nutans, Poa nemoralis, Pulmonaria officinalis, Ramunculus auricomus, Viola riviniana.

II. In den lichteren Teilen der Bestände \(\left(\frac{1}{27} - \frac{1}{33}\right) \) nicht unbeträchtlich viel Stärke aufspeichernd (3—4), in den dichteren \(\left(\frac{1}{50} - \frac{1}{65}\right) \) aber nur wenig oder gar keine (1—2).

a) Pflanzen, die unter guten Bedingungen viel Stärke aufspeichern, das Maximum des Stärkegehalts erreicht.

Actaea spicata, Aegopodium podagraria, Anemone hepatica, Asplenium filix femina, Lonicera xylosteum, Melampyrum silvaticum, Orobus vernus, Polystichum filix mas, Pol. spinulosum, Ribes alpinum, Spiraea ulmaria.

b) Pflanzen, die nie oder nur selten das Maximum des Stärkegehalts erreichen, jedoch unter guten Bedingungen viel Stärke bilden.

Convallaria majalis, Mercurialis perennis.

III. Bisher nur ziemlich stärkereich befunden.

Trientalis europaea, Fragaria vesca.
IV. In den vollbelaubten Eschenhainen immer stärkefrei befunden.

Nur solche Arten, die für gewöhnlich wenig Stärke aufspeichern oder das Maximum selten erreichen.

Anthrisus silvestris, Heracleum sibiricum, Melica nutans, Poa nemoralis, Tritium cernuum.

V. In den Eschenhainen nicht unbedeutend viel Stärke aufspeichernd, jedoch nie das Maximum des Stärkegehalts erreichend.

Die meisten übrigen Pflanzen, welche lieber Stärke bilden.

Bei allen diesen Studien wurde vorausgesetzt, daß unter den ungleichen äußeren Verhältnissen die Neigung zur Stärkebildung bei derselben Art konstant ist. Das Licht spielt bei der Bildung von Stärke aus Zucker keine Rolle (pag. 379). Es wäre indessen nicht unmöglich, wenn es auch sehr unwahrscheinlich klingt, daß infolge der lebhaften Transpiration im Lichte die Stärkebildung da bei einem niedrigeren Zuckergehalt des Blattes stattfindet als im Schatten, und daß also die Schattenblätter zwar wenig Stärke, aber viel Zucker enthalten. Um dies zu untersuchen, wurden aus getrockneten, in Wasserdampf getöterten Blättern Extrakte bereitet, und ihr Zuckergehalt wurde dann, nachdem die löslchen Eiweiß- und Gerbstoffe mit Bleiessig niedergeschlagen worden waren und die Lösung mit Salzsäure invertiert worden war, mittels Fehlings Gemisches bestimmt. Es wurden hierfür Blattportionen von ungefähr 10 g Trockengewicht angewendet. Folgende Ergebnisse wurden erhalten:

<table>
<thead>
<tr>
<th>Sonneneinfall</th>
<th>Standort:</th>
<th>im Schatten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geranium silvaticum</td>
<td>5,5 %</td>
<td>1,6 %</td>
</tr>
<tr>
<td>Rubus saxatilis</td>
<td>1,04 %</td>
<td>Spuren.</td>
</tr>
<tr>
<td>Anthrisus silvestris</td>
<td>0,80 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Solidago virgaurea</td>
<td>0,12 %</td>
<td>1,4 %</td>
</tr>
<tr>
<td>Primula officinalis</td>
<td>0 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Es zeigte sich also, daß auch die löslchen Kohlenhydrate an Menge abnehmen, und zwar sehr bedeutend. Die Schattenpflanzen sind auf einen bedeutend geringeren Nahrungskonsum angewiesen als die respektiven Sonnenformen. Will man aber die Bedeutung des großen Überschusses an Kohlenhydraten für die Ökonomie der letzteren verstehen, so muß man auch in Betracht ziehen, inwieweit dieselben die aufgespeicherten Assimilaten in den Nachtstunden verbrauchen können. Inbezug auf unsere Vegetation ist dies früher noch nicht näher untersucht worden, weshalb im Sommer 1903 Material eingesammelt wurde, um diese Frage näher zu studieren. Im Juli wurden an zwei Tagen, im August an drei Tagen abends bei Sonnenuntergang und morgens bei Sonnenaufgang Blätter von Bäumen, Sträuchern, Stauden und Gräsern eingesammelt. Für diese Beobachtungen wurden schöne Sommertage mit ruhigem Wetter und heiterem

1) Die Untersuchungsobjekte wurden bei *Sträm* im Kirchspiel Österäker von meiner Verlobten eingesammelt.

27. 7. Heiter. Um 2 Uhr nachm. 22°5. Min. 5°.
8. 8. Heiter. Um 2 Uhr nachm. 17°0. Min. 8°.
25. 8. Heiter. Um 2 Uhr nachm. 17°0. Min. 10°.

Die Beobachtungen finden sich in der nachfolgenden Tabelle zusammengestellt, wobei der Stärkegehalt der Blätter in der üblichen Weise nach Sachs angegeben worden ist.

Tabelle über Stärkegehalt der Blätter morgens und abends nach Beobachtungen im Sommer 1903.

<table>
<thead>
<tr>
<th>Namen</th>
<th>16. 7. bis</th>
<th>27. 7. bis</th>
<th>8. 8. bis</th>
<th>19. 8. bis</th>
<th>25. 8. bis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17. 7.</td>
<td>28. 7.</td>
<td>9. 8.</td>
<td>20. 8.</td>
<td>26. 8.</td>
</tr>
<tr>
<td></td>
<td>8–93.4</td>
<td>8–93.4</td>
<td>8–93.4</td>
<td>8–94.5</td>
<td>8–94.5</td>
</tr>
<tr>
<td></td>
<td>Nm. Vm.</td>
<td>Nm. Vm.</td>
<td>Nm. Vm.</td>
<td>Nm. Vm.</td>
<td>Nm. Vm.</td>
</tr>
<tr>
<td>Acer platanoides</td>
<td>1–53.4</td>
<td>54–54</td>
<td>54–54</td>
<td>5–8</td>
<td>4–8</td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>5–3–1</td>
<td>53–4–5</td>
<td>53–4–5</td>
<td>5–5</td>
<td>3–5</td>
</tr>
<tr>
<td>Quercus robur</td>
<td>5–54–1</td>
<td>1–54–5</td>
<td>5–54–5</td>
<td>1–54–5</td>
<td>5–54–5</td>
</tr>
<tr>
<td>Anthriscus silvestris</td>
<td>2–3–2–2</td>
<td>2–3–2–2</td>
<td>2–3–2–2</td>
<td>2–3–2–2</td>
<td>2–3–2–2</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>2–3–2–2</td>
<td>2–3–2–2</td>
<td>2–3–2–2</td>
<td>2–3–2–2</td>
<td>2–3–2–2</td>
</tr>
</tbody>
</table>

1) Die fettgedruckten Ziffern geben an, an welchen Stärkegehalt die Blätter sich nähern.
Es hat sich erwiesen, daß sich in vielen, ja sogar in den meisten Blättern noch sehr bedeutende Stärkenmengen am Morgenvorfrühne und besonders eigentümlich ist, daß sich die Bäume in dieser Hinsicht vor den Stauden und Gräsern auszeichnen. Unsere lichten Sommerfrühe sind deutlich all zu kurz und möglicherweise auch etwas zu kühl, um den ganzen aufgespeicherten Vorrat aufzubrauchen. Bloß wenn sich die Pflanzen in besonders kräftiger Entwicklung befanden, wie die ziemlich rasch wachsenden Sprosse von Veronica chamaedrys, Rubus idaeus u. a. hatte eine weitergehende Entleerung stattgefunden. Obgleich sich die Bäume im Juli und August in einer lebhaften Zuwachspanne befinden, so ist die Entleerung von ihren Blättern gewöhnlich doch sehr unvollständig, und oft ist bei der angewandten Methode kein Unterschied zwischen den Blättern am Abend und am Morgen zu entdecken gewesen. Der große Einfluß der Temperatur in der Nacht zeigte sich besonders am 19. August, wo am Morgen die Minimaltemperatur ziemlich hoch war. Ich glaube doch, daß die hier angeführten Nachttemperaturen mit Hinsicht auf das Klima der untersuchten Gegend nicht besonders kühl waren, und daß die gemachten Beobachtungen den gewöhnlichen Verhältnissen ziemlich entsprechen, was auch einzelne Beobachtungen auf Skabbelohmeln bestätigen. Die Sonnenpflanzen beginnen also ihre Assimilationsarbeit am Morgen mit einem ziemlich großen Vorrat an Stärke in den assimilierenden Zellen, was auf den Prozeß nachteilig einwirken muß, indem das Anhäufen von Assimilaten die Bildung von neuen sehr beeinträchtigt. Es scheint daher, als ob die Sonnenpflanzen in unseren kurzen und vielleicht auch etwas zu kühlenden Sommerfrühne nicht alle Vorteile der reichlicheren Stärkebildung zu realisieren vermögen.

Die mitgeteilten Daten weisen alle darauf hin, daß mit sinkender Lichtintensität die Assimilation geringer wird und dies auch bei ganz ausgeprägten Schattenpflanzen, wie Actaea, Dentaria, Orobus vermis, vielen Filices etc. Die durch die Stärkeuntersuchungen erhaltenen Daten erlauben, wie schon vorher mehrmals gesagt ist, durchaus nicht in allen Fällen einen Vergleich zwischen verschiedenen Arten. Aber wenn nur Pflanzen, die sehr gern Stärke bilden, berücksichtigt werden, scheint aus den mitgeteilten Beobachtungen, wie sie pag. 392—393 zusammengestellt worden sind, hervorzugehen, daß bei den Schattenpflanzen die Assimilationskurve mit sinkender Lichtintensität lang-

Im Frühling, wenn die Bäume noch unbelaubt sind, beobachtet man nur eine spärliche Stärkebildung in den Blättern dieser Pflanze, bisweilen sind sie beinahe stärkefrei, während doch da die anderen stärkebildenden Pflanzen einen großen Reichtum an Stärke zeigen. Wahrscheinlich hat man die Ursache hiervon darin zu suchen, daß das Chlorophyll und das Assimilationsgewebe des Blattes da noch nicht ihre völlige Entwicklung erreicht haben, denn nach B. Jönsson (I pag. 15—16) brauchen viele Pflanzen hierfür eine sehr lange Zeit, und einige kommen erst im Nachsommer zum vollen Abschluß ihrer Entwicklung1). Aber schon auf jener frühen Stufe der Entwicklung beobachtet man einen geringen Unterschied zwischen den Individuen der Laubholzbestände und denjenigen der sonnenoffenen Standorte; die ersteren sind reicher an Stärke als die letzteren. Diese Verschiedenheit wird im Hochsommer noch ausgeprägter, die Blätter an den beschatteten Orten werden breit, schön ausgebreitet und erhalten eine tiefgrüne Farbe, während die der sonnenoffenen Wiesen schwach tättenförmig zusammengezogen sind. Die Schattenform bildet nach vielen Beobachtungen nicht unbedeutend viel Stärke, während die Sonnenpflanzen ärmer daran sind. Im Gewebe der Sonnenblätter ist die Stärke in variierender Menge vorhanden, indem einige Partien gar keine Stärke enthalten, während an-

1) *Laserpitium latifolium* zeigt wahrscheinlich etwas Ähnliches. Im Vorsommer sind die Blätter auch an sonnenoffenen Standorten sehr stärkearm, im Hochsommer besonders stärkereich.
Hesselman, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen. 397
dere damit strotzend gefüllt sind. Die verschiedenen Partien
sind gewöhnlich durch die Nerven scharf voneinander abge-
grenzt. Es wäre ja möglich, daß eine schwächere Abfuhr der
Assimilaten im Schatten den größeren Reichtum an Stärke in
den Schattenblättern von Convallaria majalis verursachte; dies
ist jedoch nicht die einzige Ursache, wenn es auch mit einwirkt,
was folgende Versuche lehren. Zwei Proben von Convallaria
majalis wurden verdunkelt, nämlich teils an einer sonnenoffenen
Wiese, teils in einem schattenreichen Hain. Es dauerte ein paar
Tage, bis die Blätter stärkerei waren. Abgeschnittene, stärke-
freie Schattenblätter wurden zusammen mit ebenfalls stärke-
freien Sonnenblättern in Wassergläser gestellt. Eine Probe wurde
auf die sonnenoffene Wiese, die andere in den tiefen Schatten
placiert. Nachdem sie neun Stunden eines heiteren, warmen
Sommer tages assimiliert hatten (Temp. um 2 Uhr 17°S.), wurden
die Blätter mittelst der Jodprobe untersucht. Es zeigte sich da-
bei, daß die Schattenblätter sowohl in der Sonne als auch im
Schatten viel mehr Stärke gebildet hatten, als die Sonnenblätter.
Dasselbe Resultat lieferten mehrere Versuche, die in der
oben beschriebenen Weise mittels der gasanalytischen Methode
über die Assimilationsenergie der verschiedenen Blattformen von
Convallaria majalis gemacht wurden. Die näheren Ergebnisse
werden in der untenstehenden Tabelle mitgeteilt. Es zeigt sich,
dß überall das Sonnenblatt eine schwächere Assimilationsenergie
besitzt, als das Schattenblatt; das Verhältnis zwischen beiden ist
jedoch sehr wechselnd, was auch zu erwarten war, da die Blätter
von verschiedenen Lokalitäten eingesammelt worden sind und die
individuelle Variation stets bedeutend ist.

Tabelle über endometrische Assimilationsversuche mit Sonnen-
und Schattenblättern von Convallaria majalis.

| Zeit | Dauer des Versuchs | Kohle-
| | | säure-
		gehalt					
Schattenform	24. 8. 1900	45 Min.	4,14	19°2	25,6	0,282	1,55 : 1,00
Sonnenform	25. 8. 1900	45 Min.	4,20	18°1	31,1	0,266	1,29 : 1,00
Schattenform	27. 8. 1900	45 Min.	6,56	14°9	30,5	0,182	3,59 : 1,00
Sonnenform	27. 8. 1900	40 Min.	4,74	14°6	26,5	0,126	1,12 : 1,00
Sonnenform	5,59	31,1	0,113	1,00			

Mehrere Beobachtungen haben nun gezeigt, daß bei dem-
selben Lichtgemäß die Stärkeaufspeicherung im Blatte um so
geringer wurde, je trockener der Boden war, sodaß an sehr
trockenen Lokalitäten gar keine Stärke im Assimilationsgewebe
zu entdecken war. Andere störende Momente außer einem zu
starken Lichte sind also hierbei auch noch wirksam.

Ähnlich wie Convallaria verhalten sich Paris quadrifolia,
Majanthemum bifolium, die im Frühling und Vorsommer ein wenig
Stärke bilden, und Polygonatum multiflorum, die nur lösliche Zuckerarten aufspeichern. Bei Convallaria und der letzten Art ist der Zuckergehalt bestimmt worden, bei beiden ist er bei den Schattenformen höher gefunden worden, nämlich:

<table>
<thead>
<tr>
<th>Pflanzen</th>
<th>Sonne</th>
<th>Schatten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convallaria majalis</td>
<td>3,57%</td>
<td>5,45%</td>
</tr>
<tr>
<td>Polygonatum multiflorum</td>
<td>4,62%</td>
<td>5,75%</td>
</tr>
</tbody>
</table>

Für eine längere Periode scheinen also die Schattenpflanzen das volle Tageslicht nicht zu vertragen, mehrere krankhafte Veränderungen treten ein. Auf der anderen Seite sind sie auch für die Beleuchtungsveränderungen infolge der Belaubung sehr empfindlich, was meine Beobachtungen deutlich lehrten. Im Frühling, wo die Bestände noch unbelaubt sind, haben sie also in der Regel ihre beste Assimilationsperiode.

Das Anhäufen von Assimilaten in den Zellen und das Fehlen solcher spricht nichts aus über die Assimilationsenergie, mit welcher das Blatt das dargebotene Licht für die Assimilation verwenden kann. Wenn z. B. das Blatt im Schatten sehr wenig, das in der Sonne reichlich Stärke enthält, so kann jedoch das Schattenblatt infolge des größeren Chlorophyllgehalts bei
hesselman. zur kenntnis d. pflanzenlebens schwedischer Laubwiesen. 399

demselben Lichtgenuß rascher Kohlensäure zersetzen als das Sonnenblatt, was auch einige Versuche lehrten. Beispielsweise werden folgende Versuche angeführt:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemone hepatica</td>
<td>Sonne 22.8.1900 45 Min.</td>
<td>4.31</td>
<td>21.0</td>
<td>11.0 cm²</td>
<td>0.0119</td>
<td>2.48 : 1.00</td>
<td></td>
</tr>
<tr>
<td>Schatten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemone hepatica</td>
<td>Sonne 22.8.1900 45 Min.</td>
<td>5.10</td>
<td>20.9</td>
<td>14.0 cm²</td>
<td>0.0303</td>
<td>1.21 : 1.00</td>
<td></td>
</tr>
<tr>
<td>Schatten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anemone hepatica</td>
<td>Sonne 23.8.1900 45 Min.</td>
<td>5.02</td>
<td>21.5</td>
<td>13.3 cm²</td>
<td>0.0148</td>
<td>1 : 1</td>
<td></td>
</tr>
<tr>
<td>Schatten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solidago virga-</td>
<td>Sonne 27.8.1900 40 Min.</td>
<td>3.71</td>
<td>13.0</td>
<td>8.9 cm²</td>
<td>0.067</td>
<td>2.65 : 1.00</td>
<td></td>
</tr>
<tr>
<td>rea</td>
<td>Schatten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solidago virga-</td>
<td>Sonne 28.8.1900 45 Min.</td>
<td>5.09</td>
<td>14.2</td>
<td>17.0 cm²</td>
<td>0.164</td>
<td>1.36 : 1.00</td>
<td></td>
</tr>
<tr>
<td>rea</td>
<td>Schatten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubus saxatilis</td>
<td>Sonne 31.8.1900 95 Min.</td>
<td>6.16</td>
<td>13.3</td>
<td>15.2 cm²</td>
<td>0.0568</td>
<td>1.33 : 1.00</td>
<td></td>
</tr>
<tr>
<td>Schatten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Es ist schon bekannt, daß die Nahrungsbedingungen einen wesentlichen Einfluß auf die Intensität der Atmung ausüben, bei geringerer oder mangelnder Nahrung atmen die Pflanzen weniger als bei genügender Nahrungszufuhr. Kosiński (1) hat mit

Tabelle über Atmungsintensität der äußeren und inneren Blätter einiger Bäume.

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Zeit</th>
<th>Dauer des Vers.</th>
<th>t a</th>
<th>Blattpflanze</th>
<th>Trockengewicht</th>
<th>CO₂ pro cm²</th>
<th>CO₂ pro cg</th>
<th>Verh. b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraxinus excelsior a.</td>
<td>2.9.1899</td>
<td>3 St. 1690</td>
<td>23,27</td>
<td>0,1749</td>
<td>0,0116</td>
<td>0,0154</td>
<td>1,50 : 1,00</td>
<td></td>
</tr>
<tr>
<td>Fraxinus excelsior i.</td>
<td>"</td>
<td>"</td>
<td>15,70</td>
<td>0,0926</td>
<td>0,0078</td>
<td>0,0139</td>
<td>1,11 : 1,00</td>
<td></td>
</tr>
<tr>
<td>Sorbus aucuparia a.</td>
<td>2.9.1899</td>
<td>4 St. 1690</td>
<td>3,38</td>
<td>0,0379</td>
<td>0,0178</td>
<td>0,0019</td>
<td>1,17 : 1,00</td>
<td></td>
</tr>
<tr>
<td>Sorbus aucuparia i.</td>
<td>"</td>
<td>"</td>
<td>5,22</td>
<td>0,0424</td>
<td>0,0167</td>
<td>0,0020</td>
<td>1,00 : 1,05</td>
<td></td>
</tr>
<tr>
<td>Prunus padus a.</td>
<td>28.8.1899</td>
<td>4 St. 1095</td>
<td>18,08</td>
<td>0,1053</td>
<td>0,00648</td>
<td>0,0011</td>
<td>3,45 : 1,00</td>
<td></td>
</tr>
<tr>
<td>Prunus padus i.</td>
<td>"</td>
<td>"</td>
<td>22,05</td>
<td>0,1057</td>
<td>0,00189</td>
<td>0,0004</td>
<td>2,74 : 1,00</td>
<td></td>
</tr>
<tr>
<td>Corylus avellana a.</td>
<td>2.9.1899</td>
<td>3h,25m 1590</td>
<td>34,28</td>
<td>0,1674</td>
<td>0,0063</td>
<td>0,0012</td>
<td>5,91 : 1,00</td>
<td></td>
</tr>
<tr>
<td>Corylus avellana i.</td>
<td>"</td>
<td>"</td>
<td>37,42</td>
<td>0,0890</td>
<td>0,0011</td>
<td>0,0004</td>
<td>3,00 : 1,00</td>
<td></td>
</tr>
</tbody>
</table>

1) In dieser Kolumne werden zuerst die Verhältnisse zwischen den Kohlensäuremengen pro Blattfläche, dann pro Trockengewicht berechnet angegeben.
Tabelle über Atmungsintensität der Sonnen- und Schattenformen bei derselben Art.

<table>
<thead>
<tr>
<th>Name</th>
<th>Zeit</th>
<th>Dauer des Vers.</th>
<th>Blattfläche cm²</th>
<th>Trocken-gewicht cm³</th>
<th>CO₂pr. cm³</th>
<th>CO₂pr. gcr.</th>
<th>Verh.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actaea spicata<sup>1)</sup></td>
<td>14.8.1900</td>
<td>3 St.</td>
<td>1797 20.5</td>
<td>0.00138</td>
<td>1.75 : 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.7</td>
<td>0.00242</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convallaria majalis<sup>3)</sup></td>
<td>9.7.1901</td>
<td>1790 13.7</td>
<td>0.0790 0.0110</td>
<td>0.0190</td>
<td>2.10 : 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.0 0.0168</td>
<td>0.0190</td>
<td>1.19 : 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24.9 0.0016</td>
<td>0.0160</td>
<td>1.57 : 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27.9 0.00630</td>
<td>0.0170</td>
<td>1.12 : 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dentaria bulbifera<sup>3)</sup></td>
<td>5.7.1902</td>
<td>1890 17.1</td>
<td>0.0759 0.0150</td>
<td>0.0343</td>
<td>2.38 : 1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20.5 0.00663</td>
<td>0.0231</td>
<td>1.48 : 1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geranium sanguineum<sup>7)</sup></td>
<td>28.8.1899</td>
<td>2 St.</td>
<td>1690 5.8</td>
<td>0.0416</td>
<td>0.00003</td>
<td>0.00125</td>
<td>2.20 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.7 0.0230</td>
<td>0.00140</td>
<td>0.0067</td>
<td>1.87 : 1.10</td>
<td></td>
</tr>
<tr>
<td>Heracleum sibiricum<sup>2)</sup></td>
<td>28.8.1899</td>
<td>4 St.</td>
<td>1690 14.7</td>
<td>0.0630</td>
<td>0.0130</td>
<td>0.0627</td>
<td>2.65 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.1 0.0725</td>
<td>0.00419</td>
<td>0.0144</td>
<td>4.35 : 1.00</td>
<td></td>
</tr>
<tr>
<td>Laserpitium latifolium<sup>5)</sup></td>
<td>23.8.1899</td>
<td>4 St.</td>
<td>1398 18.2</td>
<td>0.0110</td>
<td></td>
<td></td>
<td>1.77 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19.5</td>
<td>0.0062</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lonicer a xylosteum<sup>1)</sup></td>
<td>22.8.1899</td>
<td>6 St.</td>
<td>1792 11.1</td>
<td>0.0168</td>
<td></td>
<td></td>
<td>2.00 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.0</td>
<td>0.0084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myrtillus nigra<sup>7)</sup></td>
<td>28.8.1899</td>
<td>4 St.</td>
<td>898 12.1</td>
<td>0.1631</td>
<td>0.0049</td>
<td>0.0058</td>
<td>2.58 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.9</td>
<td>0.0836</td>
<td>0.0019</td>
<td>0.0024</td>
<td>2.42 : 1.00</td>
</tr>
<tr>
<td>Paris quadrifolia<sup>3)</sup></td>
<td>5.7.1901</td>
<td>3 St.</td>
<td>1690 13.7</td>
<td>0.0490</td>
<td>0.0092</td>
<td>0.0263</td>
<td>2.10 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.5</td>
<td>0.0736</td>
<td>0.0046</td>
<td>0.0189</td>
<td>1.39 : 1.00</td>
</tr>
<tr>
<td>Rubus idaeus<sup>9)</sup></td>
<td>24.8.1899</td>
<td>5 St.</td>
<td>1392 19.6</td>
<td>0.1000</td>
<td>0.0104</td>
<td>0.0208</td>
<td>4.95 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21.8</td>
<td>0.0595</td>
<td>0.0021</td>
<td>0.0078</td>
<td>2.67 : 1.00</td>
</tr>
<tr>
<td>Rubus saxatilis<sup>7)</sup></td>
<td>24.8.1899</td>
<td>5 St.</td>
<td>1392 17.4</td>
<td>0.1327</td>
<td>0.0068</td>
<td>0.0115</td>
<td>2.44 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.1</td>
<td>0.0036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spirea alba<sup>9)</sup></td>
<td>26.8.1899</td>
<td>4 St.</td>
<td>1098 32.0</td>
<td>0.1678</td>
<td>0.0054</td>
<td>0.0097</td>
<td>2.25 : 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41.3</td>
<td>0.1399</td>
<td>0.0024</td>
<td>0.0088</td>
<td>1.10 : 1.00</td>
</tr>
<tr>
<td>Solidago virgaurea<sup>7)</sup></td>
<td>23.8.1899</td>
<td>4 St.</td>
<td>1495 16.0</td>
<td>0.0108</td>
<td></td>
<td>3.86 : 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
<td>0.0028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viburnum opulus<sup>7)</sup></td>
<td>24.8.1899</td>
<td>5:208 St.</td>
<td>1392 24.0</td>
<td>0.0072</td>
<td></td>
<td>4.24 : 1.00</td>
<td></td>
</tr>
</tbody>
</table>

Ziehen wir zuerst die Laubblätter der Bäume in Betracht, so fällt es sofort in die Augen, daß die Blätter bei den zwei Arten mit den lichten Kronen, welche eine ganz gleichmäßige Verteilung der Assimilationsarbeit zeigen, ziemlich gleich atmen, während sich bei *Prunus padus* und *Corylus avellana* ein bedeutender Unterschied in der Atmungsintensität zeigt. Die anderen Versuchsobjekte sind an verschiedenen Lokalitäten eingesammelt worden, immer zeigt sich jedoch im Schatten eine bedeutende Abschwächung der Atmungsintensität, welche bei einigen Versuchen ganz bedeutende Werte erreichen kann. Meine Versuchsweisen auch eine lebhaftere Atmung bei *Paris quadrifolia* und

Kap. VIII. Über die Bedeutung des Frühlingslichtes für die Ausbildung des Assimilationsgewebes, insbesondere des Palisadenparenchym der Blätter.

Es ist seit Stahl's (I) grundlegenden Arbeiten eine von vielen Forschern bewiesene Tatsache, daß das Licht auf die Ausbildung des Assimilationsgewebes, insbesondere des Palisadenparenchym's großen Einfluß ausübt. In gutem Lichte werden die Palisadenzellen länger und in vielen Fällen werden mehr Schichten solcher ausgebildet als im Schatten, wo diese Zellen ganz kurz bleiben und gewöhnlich nur ein einschichtiges Gewebe darstellen (Pick, Dufour, Grosogluk u. a. siehe z. B. Bürgerstein, Mat. etc. III, Wien 1901). Andere besonders transpirationsbefördernde oder auch die Wasserversorgung erschwerende Momente wirken in derselben Richtung ein, wie die größere oder geringere Feuchtigkeit des Bodens und der Luft, gleichwie die Ausbildung des Wurzelsystems (Areschoug, Vesque, Mer, Lothelier, Lesage u. a. siehe weiter Bürgerstein l. c.).

Die Reaktion der Pflanzen gegen äußere Bedingungen fällt jedoch bei ungleichen Pflanzen sehr verschieden aus; einige sind sehr empfindlich und weisen ganz große Veränderungen auf, andere sind mehr stabil und bleiben unter den wechselnden

Durch Anwenden der Wiesner'schen Lichtmessungsmethode ist es nun möglich, die Reaktion des Blattes bei ungleichem Lichtgenuss zu verfolgen und als Beispiel wird aus meinen Be-obachtungen Corylus avellana angeführt. Dieser Strauch besitzt Blätter, die gegen ungleiche Beleuchtung sehr empfindlich sind. Die beigefügten anatomischen Bilder (Fig. 8), die wie auch alle folgenden unter derselben Vergrößerung gezeichnet sind, illustrieren dies sehr gut. Das von der Südseite eines Strauches genommene Blatt hat zwei Reihen dicht aneinander stehender Palisadenzellen, und unter den Zellen des Schwammparenchyms zeigen einige Neigung zu derselben Form und zwar diejenigen, welche nahe an der Unterseite stehen. Das Blatt von der Nordseite eines Strauches ist nicht völlig so dick wie das frühere,

Fig. 8. Corylus avellana. Blätter unter verschiedenem Lichtgenusse assimilierend. a) Südseite eines Strauches, trockener Standort. b) Nordseite eines Strauches, frischer Standort. a) und b) sind Sonnenblätter von äußeren Teilen der Laubkrone. c) Innenblatt. Lichtgenuß = \(\frac{1}{20} \). d) Blatt von einem plagiotrophen Zweige im Schatten einer Fichte. Lichtgenüß = \(\frac{1}{33} \). c) Innen-blatt im Innern eines Bestandes. Lichtgenüß = \(\frac{1}{50} \).
bloß eine Reihe Palisadenzellen ist völlig ausgebildet, die zweite ist ziemlich lückenhaft und die Zellen haben oft nicht die typische Form der Palisadenzelle. Die inneren Blätter weichen sehr von den äußeren ab, und zwar um so mehr, je stärker der Schatten im Innern des Strauches ist. Bloß eine Reihe Palisadenzellen ist ausgebildet, und diese Zellen werden um so kürzer, je stärker der Schatten ist, in welchem das Blatt lebt. Das oberste Blatt e ist vom Innern eines Strauches mit einer ziemlich lichten Laubkrone entnommen, der Lichtgenuss beträgt da ungefähr \(\frac{1}{20} \) vom gesamten Tageslicht. Das Blatt c stammt vom innersten Teile eines dichten Bestandes her, wo der Lichtgenuss bloß ein \(\frac{1}{50} \) des gesamten Tageslichtes beträgt. Das Blatt d hat seine Entwicklung im Schatten einer Fichte vollzogen und einen Lichtgenuss von \(\frac{1}{33} \) des gesamten Tageslichtes gehabt. Wie ein Betrachten der beigefügten Figuren lehrt, werden mit sinkender Lichtintensität die Palisadenzellen kürzer, und es zeigt sich bei den Lichtbestimmungen eine große Übereinstimmung zwischen den Lichteinflüssen und der Reaktion der Pflanze. Ein wirklicher Parallelismus zwischen Lichtgenuss und Größe der Palisaden ist indessen nicht zu erwarten. Das Blatt d ist sicher bei demselben Lichtgenuss entwickelt worden, den es im Sommer genießt, über die anderen fehlen leider die nötigen Beobachtungen. Sie können ganz gut im Frühling entwickelt worden sein, wo die Haselsträucher noch nicht völlig belaubt gewesen waren.

Gewöhnlich kommen nämlich die inneren Zweige und Sprosse eines Baumes früher zum Austreiben der Knospen als die äußeren, und genießen dabei einen höheren Lichtgenuss als nachher im Sommer. Dagegen erhalten die unter ziemlich guten Lichtbedingungen sich entwickelnden Blätter oft einen ganz ausgeprägten Schattenblattbau, der dem im Sommer herrschenden Lichtgenuss am nächsten angepaßt ist. Die Reaktion des Blattes ist nämlich nach den angeführten Untersuchungen Nordhausen's nicht allein eine direkte Anpassung, sondern es machen sich dabei auch frühere Vegetationsperioden geltend und wirken als Nachwirkungen ein; auch dürften etwaige Korrelationen hier von Bedeutung sein (Nordhausen I pag. 33).

Es fragt sich nun, wie sich die Sträucher in den Laubholzbeständen verhalten. Dieselben genießen da im Frühling ein gutes, für eine reiche, lebhafe Assimilation ausreichendes Licht, im Sommer sind sie aber stark beschattet, so daß bei vielen die Assimilation nur ein Minimum erreicht. Ist es das stärkere Frühlingslicht, welches den Bau der Blätter beherrscht, oder waltet hier das schwächere Sommerlicht durch etwaige Nachwirkungen ob? Ein Vergleich zwischen den Formen derselben Art auf den sonnenoffenen Wiesen, in den dichten Haselbeständen und den immer beschatteten Wacholder- und Fichten-
beständen liefert sehr gute Aufschlüsse über diese Frage. Als Beispiele werden hier einige Pflanzen angeführt, die in ihrem Bau sehr empfindlich gegen ungleichen Lichtgenuss reagieren.

Als erstes Beispiel wird hier Ribes alpinum angeführt. Dieser Strauch kommt in den Laubwiesen unter sehr verschiedenen Lichtbedingungen vor, die Art ist allgemein auf sonnenoffenen Wiesen, auch auf ziemlich trockenen; im letzteren Falle werden die Blätter ziemlich klein und sind gewöhnlich buckelig zusammengebogen. In den Eschen- und Haselhainen, auch in

![Fig. 9. Ribes alpinum. Bau der Blätter unter verschiedenem Lichtgenuss.](image)

<table>
<thead>
<tr>
<th>L</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>25</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b)</td>
<td>17</td>
<td>20</td>
<td>d)</td>
<td>e)</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>c)</td>
<td>40</td>
<td>50</td>
<td>80</td>
<td>50</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

...besonders, kommt diese Art als eine wahre Charakterpflanze vor, ebenso in den Wacholder- und Fichtenbeständen, wo sie indessen, wenn der Schatten sehr stark wird, nur ein kümmerliches Dasein frisst. Die beigefügte Fig. 9 gibt die Blattschnitte von Ribes alpinum unter verschiedenen Bedingungen wieder. Das Blatt a stammt von einem Strauch auf einer sonnenoffenen Wiese. Das Palisadenparenchym ist schön ausgebildet, ein-
schichtig, die unmittelbar darunter liegenden Zellen zeigen außerdem eine große Neigung, palisadenähnlich zu werden. Das Schwammparenchym ist sehr luftreich und besteht aus wenig-armigen Zellen mit ungewöhnlich dicken Wänden, es enthält ein mehr bleichgrünes Chlorophyll; besonders in der Mitte des Blattes ist es wesentlich heller als in den Palisadenzellen und den der unteren Epidermis am nächsten liegenden Zellen. Das Blatt b stammt von einem Strauch in einem Haselhain. Der Sproß genoß beim Austreiben der Knospe im Frühling einen Lichtgenuß am Mittag von $\frac{1}{2,5} - \frac{1}{3}$ des gesamten Tageslichtes, und das Blatt erreichte unter diesen guten Lichtbedingungen seine völlige Entwicklung und assimilierte noch einige Zeit hinterher sehr lebhaft. Mit der Belaubung der Hasel treten ganz andere Bedingungen ein, der Lichtgenuß sank auf $\frac{1}{40} - \frac{1}{50}$ des Tageslichtes und die Assimilation wurde entsprechend herabgesetzt. Der Bau des Blattes weicht von demjenigen der sonnen-offenen Wiese nur wenig ab, die Palisadenzellen erreichen dieselbe Höhe, der Unterschied im Bau der Oberhaut ist sehr klein, nur fehlt bei den den Palisaden am nächsten liegenden Zellen die Neigung gestreckt und zylindrisch zu werden.

Ein ganz anderes Aussehen haben die Blätter, welche unter schwachem Lichtgenuß ihre Entwicklung vollziehen. Zuerst betrachten wir ein Blatt aus einem Wacholdergebüsch. Dieses ist unter einem Lichtgenuß von $\frac{1}{17} - \frac{1}{20}$ des gesamten Tageslichtes entwickelt worden und hat auch den ganzen Sommer hindurch im gedämpften Licht seine Assimilationsarbeit auszuführen gehabt. Im Vergleich mit den Blättern vom Strauche im Haselhain ist dieses Blatt bedeutend schwächer ausgebildet. Die Oberhautzellen sind dünner, und vor allem erreichen die Palisaden nie dieselbe Höhe wie bei dem Blatte aus dem Haselhain, obschon unser Blatt im Sommer unter besserer Beleuchtung arbeitet. Sogar das Schwammparenchym ist, wenn auch bedeutend luftericher, doch nicht so mächtig wie bei dem „Haselhainblatte“. Das Blatt, welches aus einem Fichtenhain stammt, hat im Sommer ungefähr dieselben Lichtbedingungen wie das „Haselhainblatt“ gehabt; die Unterschiede sind aber außerordentlich groß, die Palisaden erreichen noch nicht einmal ihre typische, zylindrische Form, sondern zeigen eine Neigung schwach trichterförmig zu werden. Noch mehr unterscheiden sich die Blätter, welche von absterbenden Sträuchern unter einer Fichte gepflückt sind. Die schwach trichterförmigen Palisaden werden nur halb so hoch wie bei den normalen Blättern. Ein Vergleich zwischen den „Haselhainblättern“ auf der einen Seite sowie den „Wacholdergebüsch-“ und „Fichtenhain-“-Blättern auf der anderen zeigt genügend die große Bedeutung des Frühlingslichtes für die Ausbildung des Assimilationsparenchyns, insbesondere der Pali-

War der Einfluß des nur schwachen Sonnenlichtes im Haselhain auf die Ausbildung des Blattes von Ribes alpinum von geringerer Bedeutung, so bewirkt er bei anderen Pflanzen eine ausgeprägte Veränderung. Als Beispiel für letzteren Fall sei Lonicera xylostenum angeführt. Die beigelegte Figur gibt Blattschnitte von diesem Strauch von verschiedenen Standorten wieder; a. stammt von einer sonnenoffenen Wiese, b. von einem Eschenhain, welcher bezüglich des Baues der Blätter mit dem Haselhain die größte Übereinstimmung hat, c. von einem Fichtenhain, ziemlich leicht, \(L = \frac{1}{25} \). Das „Eschenhainblatt“ ist bedeutend dünner; die Palisaden stehen weniger dicht, das Blatt ist bedeutend luft-

Fig. 10. Lonicera xylostenum. Bau der Blätter unter verschiedenen Lichtgenuß. a. Sonnenblatt von einer offenen Wiese \(L = 1 \). b. Schattenblatt aus einem Eschenhain \(L \) im Frühling = \(\frac{1}{2} \) (ungefähr), im Sommer = \(\frac{1}{14} - \frac{1}{18} \). c. Blatt aus einem Fichtenhain \(L = \frac{1}{25} \).

Hier werden noch zwei Arten genannt, nämlich Rubus saxatilis und Geranium sylvaticum. Die Unterschiede zwischen den Blättern auf sonnenoffenen Wiesen und denen in Eschen-
und Haselhainen sind nicht besonders groß. Aber schärfer tritt die außerordentlich große Bedeutung des Frühlingslichtes hervor, wenn Blätter aus den lichten Fichtenhainen zum Vergleich herangezogen werden. Bei beiden Arten erreicht da das Assimilationsparenchym bloß eine schwache Entwicklung, die Palisaden sind stets mehr oder minder trichterförmig und haben große Lücken in ihrer Aneinandereinordnung. Besonders schwach, ja sogar kümmerlich entwickelt sind die Assimilationszellen bei

![Image of plant sections]

Fig. 11. *Geranium sileaticum* links, *Rubus saxatilis* rechts. a. Sonnenblatt, b. Schattenblatt aus einem Haselhain, c. Schattenblatt aus einem Fichtenbestand.

Rubus saxatilis, doch hatten die Blätter sowohl von *Rubus* als auch von *Geranium* im Sommer in den Fichtenbeständen einen höheren Lichtgenuß als in den Haselbeständen.

Solidago virgaurea erbietet uns ein Beispiel einer Pflanze, die unter sehr verschiedenen Lichtbedingungen fortkommen kann, und deren Blätter sehr empfindlich gegen das Licht reagieren. Bei vollem Lichtgenüß, wie auf den offenen Wiesen, werden die Blätter sehr dick, die Palisaden bilden zwei Reihen Zellen, die ziemlich dicht aneinander stehen, die Basalblätter sind dicker und mehr dicht gebaut, als die oberen Stengelblätter, die ziemlich reich an Interzellularen sind. Im Haselhain erhalten die im Frühling entwickelten Basalblätter einen von den entsprechenden Sonnenblättern sehr abweichenden Bau, sie werden bedeu-
tend reicher an Interzellulararen, bloß eine Reihe Palisaden wird ausgebildet, die Zellen werden kürzer und zeigen eine Neigung trichterförmig zu werden; noch mehr ausgeprägt sind die im Sommer entwickelten Stengelblätter, die zuweilen, wenn Solidago im Sommer sterile Sprossen im Schatten der Hasel erzeugt, zur

Ausbildung kommen. Die letzte Figur e stellt ein Basalblatt vor, das unter den Fichten entwickelt worden ist, der Lichtgenuß war da ziemlich hoch, \(\frac{1}{25} \) ungefähr, trotzdem zeigt es nur eine schwache Ausbildung des Assimilationssystems und steht in dieser Hinsicht den Basalblättern im Haselhain bedeutend nach.

Die hier angeführten Pflanzen, deren Zahl aus meinen Beobachtungen leicht vermehrt werden konnte, zeigen alle in sehr deutlicher Weise die große Bedeutung des Frühlingslichtes für die Ausbildung des Assimilationsparenchyms. Es ist das stärkere Frühlingslicht, welches die Pflanzen in den noch unbelaubten Beständen genießen, das hier maßgebend ist. Pflanzen, die bei ihrer Entwicklung einen herabgesetzten Lichtgenuß haben, der indessen weit größer ist als der, den die Pflanzen in den
belaubten Haselbeständen genießen, erhalten eine weit geringere Ausbildung des Assimilationssystems.

Nur wenige Pflanzen entwickeln in den belaubten Haselbeständen neue Blätter, in den lichtesten Teilen, $\frac{1}{27} = \frac{1}{33}$, ist dies der Fall bei Rubus saxatilis, aber da die kleinen Blätter der langen Triebe auch bei den Sonnenpflanzen von den Basalblättern im Bau abweichen, so ist es nicht angebracht, diese Blätter mit den im Frühling entwickelten Blättern zu vergleichen.

Bei der Anpassung der Laubblätter gegenüber dem Lichte dürfte das am Mittag eintretende absolute Maximum ausschlaggebend sein für die Reaktion der Pflanzen und nicht die Lichtsumme; die am Mittag ermittelten Zahlen des relativen Lichtgenusses an verschiedenen Standorten haben also hier einen größeren Wert als beim Schätzen der Assimilationsbedingungen.

Die hier angeführten Beobachtungen, die meines Wissens ein früher nicht beobachtetes Kapitel in der Biologie der Schattenpflanzen ausmachen, zeigen, welchen großen Nutzen man von Anwenden der Wiesner'schen Lichtmessungsmethode bei pflanzengeographischen Forschungen haben kann.

Kap. IX. Versuche über die Transpiration der Pflanzen auf sonnenoffenen Wiesen und in Beständen, insbesondere in dicht geschlossenen Haselhainen.

Es dürfte außer den Nahrungsforderungen keinen Faktor geben, der für das Fortkommen einer Pflanze unter verschiedensten Umständen und auf ungleichen Standorten bedeutender ist als ihr Vermögen, das zugängliche Wasser aufzunehmen und die Abgabe desselben zu regulieren. Die Bilanz zwischen Aufnahme und Abgabe des Wassers beherrscht in vielen Hinsichten die innere und äußere Ausbildung der Organe. Die Einrichtungen, welche ein für die Pflanze ökonomisches Abgeben erzielen, treten in vielen Fällen scharf zu Tage, und die Anpassungsercheinungen gegen zu starke Transpiration sind ein beliebtes Kapitel der Ökologie geworden. Das jeweilige Vermögen, dem Boden Wasser zu entziehen, ist zwar bei den Pflanzen sehr un-
gleich, die diesbezüglichen Ausbildungen und verschiedenen physiologischen Eigenschaften des Wurzelsystems in dieser Hinsicht sind noch sehr wenig studiert worden und besonders ist die physiologische Seite dieses Problems noch sehr wenig entwickelt. Und doch dürfte gerade dieses Vermögen, wie weiter unten gezeigt wird, ebenso sehr wie die Transpiration für das Gedeihen einer Pflanze an einem bestimmten Standort von Bedeutung sein.

Viele äußere Faktoren üben auf die Transpiration einen großen Einfluß aus, nämlich Temperatur, Feuchtigkeit und Bewegung der Luft, das Licht, Zugänglichkeit des Wassers im Boden und der Vorrat des letzteren an Nahrung.

Durch den Wind erfahren die Pflanzen auch eine bedeutende Steigerung der Transpiration, die nach den experimentellen Untersuchungen Wiesner's (II) sogar hohe Werte erreichen kann; indessen gibt es einige Pflanzen, welche im Gegensatz hierzu im Winde schwächer transpirieren, indem sich ihre Stomata bei Erschütterung schließen. Temperatur, Feuchtigkeit und Bewegung der Luft, diese drei Faktoren, machen sich auf sonnenoffenen Wiesen mehr geltend als in den geschlossenen Beständen. Unter diesen drei dürfte jedoch die Feuchtigkeit für sich allein nicht von größerer Bedeutung sein; denn nach den Beobachtungen von Curtis (I) erleidet die Transpiration bei kleinen Veränderungen relativer Luftpfeuchtigkeit keine messbaren Veränderungen, und wie meine zahlreichen Observationen lehrten, sind die Differenzen an verschiedenen Standorten im Durchschnitt sehr gering.

Von weiter größerer Bedeutung als diese drei Faktoren dürfte der sehr ungleiche Lichtgenuß sein.

Ein bedeutender Teil der Lichtenergie, welche das Blatt und besonders das Chlorophyll absorbiert, wird in Wärme umgesetzt und beim Verdampfen des Wassers gebunden. Die Rolle, welche hier das Licht spielt, ist zuerst von Wiesner (I) durch eine Reihe Untersuchungen klargestellt worden. Welche bedeutende Energiemengen hier in Betracht kommen, zeigen vor allem die großartig angelegten Untersuchungen, welche Brown (I) zusammen mit Escombe ausgeführt hat. Bei einem Ver-
suche an der Sonnenblume fand dieser Verfasser an einem klaren Auguststage folgende Werte (stets pro Quadratm. und Stunde). Die einfallende Lichtenergie hatte einen Wert von 600000 Grammkalorien, hiervon wurden 166800 beim Verdampfen des Wassers und 3200 bei der Assimilation der Kohlensäure gebunden; das Blatt hatte also 28% von der gesamten Energie absorbiert, davon waren 27,5% bei der Transpiration und nur 0,5% bei der Assimilation verwendet worden. Der „ökonomische Coefficient“ der Pflanzen ist also sehr niedrig, variiert je nach den äußeren Umständen und ist gar kein konstanter Faktor; im diffusen Licht betrug die Totalenergie in einem Falle 60000 Grammkalorien, wovon 57000 oder 95% absorbiert wurden. Hiervon fanden 55380 Verwendung bei der Transpiration, 1620 bei der Assimilation. Im direkten Sonnenlichte verschiebt sich also die Energieverwendung zum Vorteil der Transpiration. Das Verhältnis zwischen den bei der Transpiration und Assimilation verwendeten Energiemengen war nämlich im Sonnenlichte ungefähr wie 52:1, im diffusen Licht wie 34:1. Schon hieraus können wir schließen, daß die Pflanzen auf den sonnenoffenen Wiesen und in den Baumbeständen die dargebotene Energie sehr ungleich verwenden. Die Ursachen für die bedeutenden Unterschiede, welche in bezug auf die Transpiration zwischen den sonnenoffenen Wiesen und den geschlossenen Beständen gefunden worden sind, dürften auch meiner Ansicht nach hauptsächlich in dem ungleichen Lichtgenüß zu suchen sein.

Auf den vermutlichen Einfluß des Bodens auf die Transpiration an den ungleichen Standorten werde ich am Schluß des Kapitels etwas eingehen.

Aber wie transpirationsfördernd auch die Bedingungen auf den Wiesen im Vergleich mit denen in den Beständen sind, so verändert sich der äußere und innere Bau der Pflanze doch so sehr an den verschiedenen Standorten, daß sich der Effekt doch nicht ohne weiteres berechnen läßt. In den geschlossenen Beständen finden wir die dünnen, flach ausgebreiteten Blattscheiben, welche geeignet sind, die gesamte Energie zu empfangen; auf den sonnenoffenen Wiesen dagegen nehmen die Blätter ganz andere Lagen ein, sie sind oft mehr oder weniger vertikal aufgerichtet, wie z. B. bei Majanthemum bifolium, vielfache Veränderungen in der Exposition und Krümmungen der Blattscheibe kommen zustande, die alle den Effekt erzielen, den direkten Sonnenlicht möglichst zu entweichen. Die Strahlen treffen gewöhnlich das Blatt unter geneigtem Winkel, wobei die Absorption geringer ist als beim senkrechten Einfall derselben. Die Veränderungen im anatomischen Aufbau sind nicht weniger bedeutend, die Unterschiede aber bei verschiedenen Pflanzen sehr ungleich ausgeprägt. Sie zeigen sich in einer mächtigeren Entwicklung des Hautgewebes, insbesondere ist die Kutikula nicht unbedeutend stärker entwickelt bei den Pflanzen auf den sonnenoffenen Wiesen als bei denjenigen in den Baumbeständen. Das ganze Blatt ist auch dicker, die Palisadenzellen sind länger.
und stehen dichter aneinander, und die Interzellularen sind beschränkter. Alle diese Veränderungen werden gewöhnlich als transpirations-hemmend angesehen.
Diese Versuche hatten jedoch bloß einen beschränkteren Wert; längere Serien konnten auf diese Weise nicht ausgeführt werden, denn bei einem abgeschnittenen Sproß oder Blatte sinkt immer infolge des unvermeidlichen Welkens die Transpiration mehr und mehr, und etwaige krankhafte Veränderungen sind außerdem noch in Betracht zu ziehen. Für kürzere Versuchszeiten und beim Vergleich zwischen Individuen derselben Art unter verschiedenen Umständen hat jedoch diese Methode immer einen gewissen Wert.
Wie in einem früheren Kapitel gesagt, wurden, um den natürlichen Verhältnissen so nahe wie möglich zu kommen, die Pflanzen in Töpfe eingesetzt. Schon im Vorsommer 1900 wurden einige Versuche in dieser Richtung gemacht, aber von diesen

Im Mai 1901 und Mitte Juni desselben Jahres wurden noch mehrere Individuen in Töpfe gesetzt: im allgemeinen gelangen diese Versuche gut, alle Individuen aber, welche ein paar Tage lang Turgescenzveränderungen im Blatte durch Welken gezeigt hatten, und bei welchen also zu vermuten war, daß das Wurzelsystem einen größeren Schaden erlitten hatte, wurden aus der Serie entfernt. Auf diese Weise wurde dafür Sorge getragen, daß nur mit völlig frischen Individuen experimentiert wurde. In der Tat hatten auch meine Versuchs pflanzen ein sehr schönes Aussehen erhalten, besonders da, wo sie im Schatten standen, es waren viele wirklich stattliche Individuen unter ihnen.

Wegen der großen Mühe, die solche Versuche erforderten, war es natürlich schwer, Transpirationsversuche an mehreren Standorten anzustellen, ich begnügte mich daher, meine Versuche an zwei Standorten vorzunehmen, die als sehr charakteristisch für die Laubwiesen angesehen werden konnten, nämlich auf einer sonnenoffenen Wiese und in einem stark und dicht geschlossenen Haselhain. Diese zwei Standorte waren in den
Sommern 1899 und 1900 in bezug auf Temperatur und Feuchtigkeit sehr genau studiert worden, mit Hinsicht auf die relative Feuchtigkeit war im Durchschnitt kein Unterschied zwischen beiden gefunden worden, die Temperatur aber war in dem Haselhain ein wenig niedriger. Auf der sonnenoffenen Wiese genossen die Pflanzen beinahe den ganzen Tag das gesamte Tageslicht, bloß spät am Nachmittag waren die Versuchs pflanzen von einer Heuscheune schwach beschattet: im Haselhain war der Lichtgenuß sehr reduziert und betrug am Mittag \(\frac{1}{60} \cdot \frac{1}{65} \). Da ich bloß eine Wage hatte, mußten die Pflanzen von dem beschatteten Standort in die kleine Hütte getragen werden, hierbei wurden sie ein paar Minuten dem vollen Sonnenlichte ausgesetzt, dies dürfte aber die Transpirationszahlen der beschatteten Pflanzen nur so wenig erhöht haben, daß die Veränderung nicht weiter von Bedeutung ist. Es geschieht ja oft auch an windigen Tagen, daß sich die Zweige der Haselsträucher in kräftiger Bewegung befinden und dann der Sonne dann und wann einen Augenblick ungehinderten Zutritt gestatten können. Derartige Schwankungen der Lichtintensität sind in der Natur natürlich unvermeidlich.

Wollte man den natürlichen Verhältnissen so nahe wie möglich kommen, mußte man ja auch dem Boden in den Töpfen denselben Feuchtigkeitsgehalt geben, wie ihn die natürlichen Standorte haben; dies zu realisieren schien indessen sehr schwierig zu sein; deshalb zog ich vor, den Boden so weit es möglich war, bei allen Versuchen ungefähr gleich naß zu halten. Ehe ich eine Transpirationsserie begann, wurden daher alle Versuchs pflanzen, so weit es möglich war, gleichmäßig begossen, bis der Boden dem Finger deutlich feucht erschien. In bezug auf den Wassergehalt dürften sich also die Pflanzen unter optimalen Transpirationsbedingungen befunden haben.

Töpfe von drei verschiedenen Dimensionen wurden dabei angewandt, nämlich die kleinsten mit einem Volumen von zirka 1 l, die mittleren von 2,5 l und die größten von 3,5 l. Je nach der Größe wurden die Individuen in die verschiedenen Töpfe eingesetzt.

z. B. *Allium ursinum* litten dabei keinen Schaden und hielten sich nach dieser Operation genau ebenso lange frisch, wie die an natürlichen Standorten stehenden Pflanzen.

Die Töpfe mit Sonnenpflanzen wurden in kleine Löcher im Boden eingesenkt und der Deckel mit frisch abgepflückten Blättern bedeckt, um dadurch die direkte Bestrahlung abzuwenden. Ich hoffe, daß sich infolgedessen die Temperatur in den Töpfen nicht viel von derjenigen des Bodens unterschieden hat.

Einige Vorversuche überzeugten mich, daß ich durch diese Anordnung einen genügenden Verschluß erzielt hatte. Am 18.6. wurden zwei Töpfe mit feuchter Erde auf die beschriebene Weise in Zinkgefäße eingeschlossen und in Löchern auf der sonnenoffenen Wiese aufgestellt. Folgende Gewichte wurden erhalten:

<table>
<thead>
<tr>
<th>Datum</th>
<th>Uhrzeit</th>
<th>V. M.</th>
<th>Gewicht (gr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.6</td>
<td>1h 45m</td>
<td>2340,63</td>
<td>1272,63</td>
</tr>
<tr>
<td>18.6</td>
<td>6h 45m</td>
<td>2340,65</td>
<td>1272,63</td>
</tr>
<tr>
<td>19.6</td>
<td>11h</td>
<td>2340,64</td>
<td>1272,64</td>
</tr>
<tr>
<td>19.6</td>
<td>7h 15m</td>
<td>2340,64</td>
<td>1272,64</td>
</tr>
<tr>
<td>20.6</td>
<td>9h 45m</td>
<td>2340,65</td>
<td>1272,64</td>
</tr>
<tr>
<td>21.6</td>
<td>10h 40m</td>
<td>2340,65</td>
<td>1272,66</td>
</tr>
<tr>
<td>22.6</td>
<td>9h</td>
<td>2349,86</td>
<td>1272,70</td>
</tr>
</tbody>
</table>

Während dieser Versuchszeit war das Wetter teils schön und klar, teils war der Himmel bewölkter, ja es fiel sogar ein schwacher Regen. Beide Töpfe wurden in der Versuchszeit ein wenig schwerer, aber unbedeutend, die Unterschiede an einem Tag liegen innerhalb der Empfindlichkeitsgrenze der Wage. Bei den Transpirationszahlen, die ich erhalten habe, kann der hiervon herrührende Fehler höchstens 0,5% erreichen, gewöhnlich beträgt er nur einige Hundertteile % und kann also völlig unberücksichtigt bleiben. Die Gewichtsveränderungen dürften hauptsächlich ihren Grund in einiger Bildung von Zinkoxid an den Außenseiten der Topfwände gehabt haben.

Die Fläche der Blätter wurde auf die vorher erwähnte Weise bestimmt, bei den folgenden Versuchen ist die Transpirationssumme nur für eine Fläche berechnet worden, die also bloß eine Seite des Blattes repräsenttiert und nicht, wie oft gebräuchlich, Ober- und Unterseite zusammengenommen.

Zuerst werden hier zehn Potometerversuche angeführt, welche alle im Sommer 1899 gemacht worden sind: die Transpirationszahlen sind pro 10 cm² berechnet.

I. 6.7. 1899, 9h 21m — 12h 21m V. M.
Temperatur und Witterung:
Haselhain.
9h V. M. 23°. 87%.
Sonnenoffene Wiese.
8h 30m V. M. 25,5°. 80%.
Heiter.
Erste Stunde. Versuchszeit.
Sonne 13.21 " 16,4 " 4,32:1.
II. 4.8.1899, 11h 55m — 12h 8m M. — 1h 55m N. M.
Versuchsplätze: Offene Wiesen und ein Hain aus Erlen, Eschen, Faulbäumen (*Prunus padus*), Wacholder u. a. (Rel. Lichtgenüß = \(\frac{1}{30} \))
Hesselman. Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen. 417

Temperatur und Witterung:

2 h N. M. 17°9. 57°. Frischer. Frische N.

Rubus idaeus. Jahressprosse in lebhaftem Wachstum befindlich.

Sonne. 4,44 cg. 2,04: 1.

Schatten. 2,16 °

III. 4. 8. 1899. 12 h 25 m — 12 h 35 m bis 1 h 25 m — 1 h 35 m.

Versuchsplätze: Dieselben wie beim vorigen Versuche.

Solidago virgaurea. Sprosse in lebhaftem Wachstum.

Sonne. 5,43 cg. 5,60: 1.

Schatten. 0,96 °

IV. 7. 8. 1899. 2 h 10 m — 2 h 17 m bis 7 h 10 m — 7 h 17 m N. M.

Versuchsplätze: Dieselben wie beim vorigen Versuche.

Temperatur und Witterung:

2 h N. M. 11°6. 70°. Fast heiter. Schw. NNO.

Prunus padus. Sonnen- und Schattensprosse mit mehreren Blättern.

Sonne. 3,04. 1,58: 1.

Schatten. 2,16 °

V. 8. 8. 1899. 11 h 27 m — 11 h 37 m bis 12 h 27 m — 12 h 37 m.

Versuchsplätze: Innere und äußere Teile eines großen Bestandes aus

Spiraea ulmaria.

Temperatur und Witterung:

2 h N. M. 13°9. 77°. Bewölkt.

Spiraea ulmaria.

Sonneblatt. (Lichtintensität = 0,276). 2,65 cg. 1,56: 1.

Schattenblatt. (= 0,163). 1,69 °

VI. 9. 8. 1899. 10 h 32 m — 10 h 35 m V. M. bis 12 h 32 m — 12 h 35 m N. M.

Versuchsplätze: Haselhain. (Rel. Lichtgenuß = 40) und sonnenoffene Wiese.

Temperatur und Witterung:

2 h N. M. 15°4. 52°. Frischer. Frische N.

Ribes alpinum. Reichblättrige Sprosse von sonnenoffener Wiese und Haselhain.

Sonne. 6,14 cg. 3,41: 1.

Schatten. 1,80 °

VII. 9. 8. 1899. 12 h 50 m — 1 h bis 5 h — 5 h 5 m N. M.

Versuchsplätze: Sonnenoffene Wiese und Haselhain.

Lonicera xylosteum. Reichblättrige Sprosse von Sträuchern in Sonne und Schatten.

Sonne. 8,23 cg. 2,30: 1.

Schatten. 3,58 °

VIII. 10. 8. 1899. 10 h — 10 h 40 m V. M. bis 12 h — 12 h 40 m N. M.

Versuchsplätze: Sonnenoffene Wiese und Haselhain.

Temperatur und Witterung:

Ribes alpinum. Reichblättrige Sprosse von Sträuchern aus den respektiven sonnenoffenen und beschatteten Standorten.

Sonne. 5,00 2,28: 1.

Schatten. 2,19.

IX. 29. 8. 1899. 12 h 45 m bis 7 h 45 m N. M.

Versuchsplätze: Sonnenoffene Wiese und Bestand aus Erlen, Eschen, Faulbäumen, Wacholder u. a.

Temperatur und Witterung:

2 h N. M. 15°7. 58°. Heiter. Schw. N.

Myrtillus nigra. Reichblättrige Sprosse von den respektiven sonnenoffenen und beschatteten Standorten.

Sonne. 3,29 cg. 3,05: 1.

Schatten. 1,08 cg.

X. 2. 9. 1899. 12 h 15 m bis 4 h 45 m N. M.

Versuchsplätze: Sonnenoffene Wiesen und Wacholderbestand.
Temperatur und Witterung:
2 h 5 min. N. M. 14°. 89 mg. Fast heiter. Fr. S.
Geranium sanguineum. Reichblättrige Sprosse aus den respektiven sonnenoffenen und beschatteten Standorten.
Sonne. 9,06 cg 1:1.
Schatten. 9,01 cg.

Außer No. X zeigen diese alle eine weit lebhaftere Transpiration bei den Pflanzen der sonnenoffenen Wiesen als bei denen in den geschlossenen Strauch- und Baumbeständen, und die Unterschiede erreichen vielfach ganz außerordentliche Werte wie z. B. bei den Versuchen mit Solidago virgaurea, wo das Sonnenindividuum 5 bis 6 mal stärker transpirierte als das Individuum im Schatten. Diese Versuche können jedoch keinen tieferen Einblick in die Verhältnisse gewähren, die Methode ist dafür zu roh und läßt keine längeren Versuche zu. Mit den in Töpfen eingesetzten Individuen wurden dagegen ziemlich lange Versuchsreihen ange- stellt, die bisweilen eine ganze Woche oder noch länger dauerten. Bei der Auswahl der Versuchsobjekte wurde so verfahren, daß ich teils solche Arten untersuchte, die auf sonnenoffenen Standorten Palisadenzellen ausbilden, in Schatten aber nur kürzere derartige erhalten oder sogar einen wahren Schattenblattbau bekommen, teils solche schattenliebende, die sowohl in der Sonne als auch im Schatten wachsen können, ohne den anatomischen Bau wesentlich zu verändern, und die auch bei vollem Lichtgenüß keine Palisaden ausbilden.

Ehe ich auf die nähere Mitteilung meiner Versuchsergebnisse übergehe, mögen vorerst einige Bemerkungen über den anatomischen Bau der Sonnen- und Schattenblätter der untersuchten Arten vorausgeschickt werden.

Spiraea ulmaria. In den Schatten sind die Blätter dieser Art eben und flach ausgebogen, dünn und von einer ziemlich leicht-grünen Farbe, in der Sonne werden die Blattlappen etwas zusammengezogen und parallel mit den Nerven gefaltet. Im inneren Bau unterscheiden sich die Sonnen- und Schattenblätter sehr voneinander. Die Sonnenblätter sind bedeutend dicker, und haben zwei Reihen ziemlich dichtstehender Palisaden, das Schwammparenchym ist auch ziemlich dicht. Die obere Epidermis hat ziemlich dicke Außenwände und eine deutliche Kutikula. Einzelne Schleimzellen kommen hier und da in der oberen Epidermis vor. Die Schattenblätter, deren Typus in Fig. 13b sehr
ausgeprägt hervortritt, wo ein Blatt aus den am meisten geschlossenen Haselbeständen gewählt ist, weichen hiervon sehr ab. Es kommen daselbst keine deutlichen Palisaden zur Entwickelung, die Assimilationszellen zeigen eine große Neigung trichterförmig zu werden, das Mesophyll ist bedeutend luftreicher und die äußere Epidermiswand sehr dünn. Spaltöffnungen finden sich nur auf der Unterseite des Blattes, von grauen Haaren geschützt, so daß sie sich nicht gut rechnen lassen.

Fig. 13. *Spiraea ulmaria*. a. Sonnenblatt, b. Schattenblatt aus einem Haselhain.

Fig. 14. *Achillea millefolium*. Querschnitt durch ein Blattlappen eines Sonnenblattes.
wenig lockerer als beim Sonnenblatte. Spaltöffnungen kommen auf beiden Seiten des Blattes vor.

Veronica chamaedrys. Im Äußeren ist ein deutlicher Unterschied zwischen den Sonnen- und Schattenblättern, die ersteren sind etwas zusammengebogen und etwas gefaltet, im Schatten sind die Blätter mehr eben und flach ausgebreitet. Das Sonnenblatt hat eine Reihe deutlicher Palisadenzellen, die bisweilen schräg gegen die Blattspitze hin gerichtet sind, die unter diesen liegenden Zellen zeigen auch eine große Neigung palisadenähnlich zu werden, das Mesophyll ist ziemlich locker, sogar die Palisaden liefern große Interzellularen zwischen einander. Im Schatten der Haselsträucher sind die Palisaden sehr kurz, eine zweite Reihe solcher Zellen kommt nicht zur Ausbildung, das Mesophyll ist ungefähr ebenso luftreich wie bei dem Sonnenblatte, die Epidermiszellen haben dünne Wände. Spaltöffnungen finden sich hauptsächlich nur auf der Unterseite, im Schatten 205, in der Sonne 251 pro qmm.

Geranium silvaticum. (siehe Näheres Fig. 11 pag. 408). Im Schatten sind die Blätter horizontal flach ausgebreitet, an sonnennoffenen Wiesen dagegen, besonders da, wo der Boden etwas trocken ist, sind die Blattlappen zusammengebogen und oft gefaltet. Im inneren Bau unterscheiden sich die Blätter ziemlich wenig voneinander, sowohl das Schatten- wie auch das Sonnenblatt hat eine Reihe schöner, gut ausgebildeter Palisaden. Die Palisaden der Schattenblätter sind an der Basis etwas mehr zugespitzt, sonst weichen sie wenig von denjenigen der Sonnenblätter ab. Das Mesophyll des Schattenblattes ist im ganzen lockerer und luftreicher als dasjenige des Sonnenblattes; die Epidermis hat dickere Außenwände. Nur auf der Unterseite kommen Spaltöffnungen vor, in der Sonne 285, im Schatten 200 pro qmm.

Genus viride. Im Schatten sind die Blätter bedeutend größer und breiter als an den sonnenoffenen Plätzen und haben auch mehr flach ausgebreitete Spreiten. An sonnenoffenen Lokalitäten sind sie ein wenig zusammengebogen. Der Unterschied im anatomischen Bau ist ziemlich ausgeprägt. Die Sonnenform hat eine Reihe schön ausgebildeter Palisaden, und bisweilen gibt es einige schwache Andeutungen zu einer zweiten Reihe, das Schwampparen-
Fig. 16. Geum visuale. a. Sonnenblatt, b. Schattenblatt aus einem Haselhain.

Fragaria vesca. Im Äußeren unterscheiden sich die Sonnen- und Schattenblätter dieser Art nicht viel voneinander, in der Sonne sind die Blätter mehr zusammengebogen und sehr schwach gefaltet, im Schatten mehr flach ausgebreitet. Im anatomischen Bau unterscheiden sie sich auch nicht sehr voneinander; zwei Reihen kurzer Palisaden finden sich an der oberen Seite des Blattes sowohl bei der Sonnen- als auch bei der Schattenform vor. das Schwammparenchym besteht aus einem Paar Zellschichten. Das Schattenblatt hat etwas kleinere Chloroplasten und ist lockerer gebaut als das Sonnenblatt, die Außenwände der Epidermiszellen sind dünner, sonst stimmen beide Blätter sehr mit einander überein. Die obere Epidermis ist reichlich mit Schleimzellen versehen. Die Unterseite hat lange, einzellige Haare, mit dicken Wänden, dieselben sind gegen das Blatt gedrückt.

Spaltöffnungen auf der Unterseite des Blattes, von dichtstehenden Haaren geschützt, die reichlicher bei der Sonnenform vorkommen, im Schatten 160, in der Sonne 220 pro qmm.

Fig. 17. Fragaria vesca. Querschnitt eines Schattenblattes.

Solidago virgaurea. Über den Sonnenblattbau dieser Pflanze geben die auf pag. 409 mitgeteilten Figuren ein Bild. Die Grundblätter sind sehr dick, haben zwei Reihen nicht besonders hoher Palisaden, das Schwammparenchym ist ziemlich stark entwickelt, Spaltöffnungen finden sich an beiden Seiten der Blätter. Die Stengelblätter haben zwei Reihen etwas kürzerer Palisaden, das Schwammparenchym ist auch schwächer, aber reicher an Interzellularen. Im Schatten sind die Blätter bedeutend dünner, die Palisaden sind breiter und liefern größere Interzellularen.
zwischen einander, die Epidermiszellen haben bedeutend schwächere Außenwände. Spaltöffnungen finden sich auf beiden Seiten, auf der Unterseite des Blattes in der Sonne 108, auf der Oberseite 74 pro qmm.

Rubia saxatilis. Bei dieser Art sind Transpirationsversuche nur mit der Schattenform angestellt worden. Das Schattenblatt von *Rub. saxatilis* hat eine Reihe schöner Palisaden, das Schwammparenchym hat vielarmige Zellen, nimmt aber keinen größeren Teil des Blattquerschnittes ein. Das Mesophyll ist sehr locker und luftreich. Die Epidermiszellen sind ziemlich groß, die Außenwände sind nicht besonders dünn (siehe übrigens Fig. 11b p. 408). Spaltöffnungen kommen nur auf der Unterseite vor, 145 pro qmm im Schatten.

Fig. 18. *Convallaria majalis*. a. Querschnitt eines Sonnenblattes, b. die quergestreckten Mesophyllzellen an der Unterseite des Blattes in Flächenansicht.

Majanthemum bifolium. Im Schatten nehmen die Blätter eine fast horizontale Lage ein, auf den sonnenoffenen Wiesen sind sie vertikal aufgerichtet. Das Schattenblatt hat eine mehr tiefgrüne Farbe als das Sonnenblatt, welches oft fast bleichgrün erscheint. Das Mesophyll des Blattes besteht aus ziemlich gleichförmigen Zellen, an der Oberseite sind dieselben breiter als hoch und haben unregelmäßige, ganz kurze Arme, wodurch sie miteinander kommunizieren, sie stellen eine Art Schwammparenchym-
zellen dar. An der Unterseite haben die Zellen längere Arme und liefern größere Interzellularen zwischen einander. Im anatomischen Bau unterscheiden sich die Blätter nur wenig von einander. Das Sonnenblatt ist kaum weniger locker gebaut als das Schattenblatt, die Außenwände der Epidermiszellen sind ein wenig dicker. Spaltöffnungen kommen nur auf der Unterseite vor, in der Sonne 131, im Schatten 114 pro qmm.

Convolvulus majalis und *Majanthemum bifolium* haben im Vergleich mit *Geranium silvaticum*, *Fragaria* und den meisten anderen Versuchspflanzen ein ziemlich dichtes Mesophyll.

Spaltöffnungen kommen nur auf der Unterseite vor.

Allium ursinum. Im Schatten sind die Blätter schräg aufwärts gebogen, und zwar so, daß ein großer Teil der Blattspreite eine fast horizontale Lage einnimmt; an mehr sonnenoffenen Standorten stehen dagegen die Blätter vertikal aufwärts gerichtet. Sonnen- und Schattenblätter unterscheiden sich im anatomischen Bau nur wenig voneinander. An der (biologischen) Oberseite besteht das Mesophyll aus quergestreckten Zellen, die mit groben Ausstülpungen miteinander kommunizieren, auf der Unterseite haben die Zellen einen Schwammzellenhabititus mit längeren Armen.

Fig. 19. *Majanthemum bifolium*. a) Sonnenblatt. b) Schattenblatt. Querschnitte.

Fig. 20. *Paris quadrifolia*. Schattenblatt.
Das Blatt nähert sich im anatomischen Bau Convallaria majalis. Spaltöffnungen kommen nur auf der Unterseite des Blattes vor, im Schatten 91, in der Sonne 80 pro qmm.

Die Sonnenblätter haben einen ebenso lockeren Bau und ebenso dünne Epidermiswände wie die der Schattenform.

Actaea spicata. Auf den beschatteten Standorten sind die Blätter flach ausgebreitet mit ebenen Blattspreiten, auf den sonnenoffenen Wiesen sind sie oft buckelig und ein wenig zusammengebogen. Das Mesophyll besteht aus einer Schicht breiter, kurzer Armpalisaden, unter diesen liegt ein drei- bis vierischichtiges Schwammparenchym, dessen Zellen an der Unter-

Anemone hepatica. Die Blätter sind an beschatteten Standorten eben und flach ausgebreitet, an den sonnenoffenen Wiesen
sind die Blattlappen zusammengebogen und buckelig. Das Mesophyll besteht aus einer Schicht ziemlich schöner Armpalisaden, und die Zellen der am nächsten darunter liegenden Schicht

Fig. 23. *Actaea spicata.* a) Blatt von einem Exemplar auf einer sonnenoffenen Wiese, b) Blatt aus einem Haselhain.

![Figure 23](image1.png)

Fig. 24. *Anemone hepatica.* Querschnitt durch ein Schattenblatt.

![Figure 24](image2.png)

Fig. 25. *Stachys silvatica.* Querschnitt durch ein Sonnenblatt.

![Figure 25](image3.png)
dünnere Außenwände als bei der Sonnenform. Spaltöffnungen gibt es sowohl auf der Ober- als auf der Unterseite des Blattes, im Schatten Oberseite 131, Unterseite 189, pro qmm.

Luzula pilosa. Im Äußeren unterscheiden sich die Schatten- und Sonnenblätter nur wenig voneinander, die Sonnenblätter sind kleiner und etwas mehr bleichgrün. Das Blatt hat an der oberen Seite eine großzellige Epidermis aus sehr hohen Zellen bestehend, hier finden sich keine Spaltöffnungen; an der unteren Seite sind die Epidermisschichten niedriger, die Spaltöffnungen, welche von zwei Nebenzellen umgeben sind, liegen in bestimmten Reihen. Das Mesophyll ist inmitten des Blattes sehr luftreich, aber arm an Chloroplasten, die Zellen sind schön sternförmig, sie sterben gewöhnlich bald ab und geben zu Luftkanälen zwischen den Fibrovasalsträngen Anlaß. An der oberen Seite stehen die Zellen ziemlich dicht aneinander, an der unteren sind sie schön netzförmig miteinander vereinigt, daselbst kommen ziemlich große Interzellularen vor. Spaltöffnungen nur auf der Unterseite, im Schatten 74 pro qmm.

Calluna vulgaris. Mit dieser in bezug auf den Blattbau ziemlich eigentümlichen Pflanze wurde ein Transpirationsversuch gemacht. Bekanntlich ist das Blatt fest gegen den Stamm angedrückt und stark zusammengezogen, so daß sich die morphologische Unterseite nur als eine Rinne an der dem Stamme entgegengesetzten Seite zeigt, nur hier finden sich die Spaltöffnungen in vertikalen Reihen angeordnet. Der Eingang der Rinne ist außerdem mit kleinen, steifen Haaren versehen. Das Mesophyll ist sehr locker, inmitten des Blattes befindet sich ein großer lufterfüllter Raum. Die inneren Wände der meisten

Fig. 26. Luzula pilosa. Querschnitt aus dem mittleren Teil eines Blattes.

Fig. 27. Dentaria bulbifera. Schattenblatt. Querschnitt.

Die Transpirationsversuche wurden, wo möglich, in der Weise ausgeführt, daß ich stets Pflanzen mit Palisaden und solche mit einem minder scharf differenziertem Blattbau zum Vergleich wählte.

Actaea spicata hatte sich im Frühling auf einem beinahe völlig sonnenoffenen Standorte entfaltet. Nur ein einziges Blatt war entwickelt, Blattfläche 85,8 cm², Trockengewicht 0,4830 g. Dieses Exemplar wurde Anfang Juni in einen Topf eingepflanzt. Es zeigten sich keine Turgoschwankungen.

Trientalis europaea, Sonnenform, war Ende Mai in einen ziemlich unentwickelten Zustand in einen Topf eingesetzt worden. Kleines, aber sehr schönes Individuum. Blattfläche 18,3 cm², Trockengewicht 0,1223 g. Trientalis europaea, Schattenform, war im September 1900 in einen Topf eingesetzt worden, entwickelte sich vom Ende April in dem Haselhain. Sehr schönes, ziemlich großblättriges Individuum. Blattfläche 90,9 cm², Trockengewicht 0,1807 g.
Majanthemum bifolium, Sonnenform. Ein Erdklumpen wurde im Juni in einen großen Topf eingesetzt. Fünf aufgerichtete, vertikal stehende Blätter waren entwickelt. Bis zur Mitte August sind keine kräftigen Veränderungen wahrgenommen worden. Hatte 14 Tage in dem Topf gestanden, ehe die Versuchsserie begann. Blattfläche 57,2 cm², Trockengewicht 0,2963 g, die Blattspreiten allein 0,2781 g.

Spiraea ulmaria, Sonnenform, wurde im Mai eingepflanzt, als die Blätter noch sehr wenig entwickelt waren, vier Blätter, von welchen eins während des Versuchs abgeschnitten wurde. Schönes Individuum. Blattfläche 232,0 cm², Trockengewicht 1,1544 g, die Blattspreiten allein 1,0236 g.

Spiraea ulmaria, Schattenform, wurde im Mai in einen Topf gesetzt. Schönes Individuum. Zwei große Blätter. Blattfläche 179,7 cm², Trockengewicht 0,9266 g, die Blattspreiten allein 0,4434 g.

Veronica chamaedrys, Sonnenform, zwei kleine Individuen wurden Mitte Juni in einen großen Topf eingesetzt. Kein Welken unmittelbar nach dem Umpflanzen. Keine etwaigen Krankhaften Veränderungen. Blattfläche 17,7 cm², Trockengewicht 0,1189 g.

Veronica chamaedrys, Schattenform, wurde Mitte Juni in den Topf eingepflanzt. Schönes Schattenindividuum. Blattfläche 22,7 cm², Trockengewicht 0,0805 g.

Es fanden sich also in dieser Serie Repräsentanten der beiden Arten Pflanzen, nämlich Veronica chamaedrys und Spiraea ulmaria, die auf den sonnenoffenen Standorten ein schönes Palisadenparenchym entwickeln, Actaea spicata, Majanthemum bifolium und Trientalis europaea, die keine Palisaden haben, und deren Sonnen- und Schattenblätter sich bezüglich des anatomischen Lanes ziemlich gleich verhalten. Die Beobachtungsergebnisse sind in der nachstehenden Tabelle enthalten. (Siehe nächste Seite.)

Um aber die Resultate besser und schärfer hervortreten zu lassen, habe ich an der Tafel Fig. 29 die Transpirationssummen pro 10 cm² für jeden Tag angegeben. Beim Betrachten dieser Tafel fällt es sofort in die Augen, daß die Transpirationszahlen für die drei Gruppen 1. Sonnenpflanzen mit Palisadenparenchym, 2. ebensolehe ohne Palisadenparenchym und 3. Schattenpflanzen sich auf drei verschiedene Gruppen verteilen. Am meisten haben die Sonnenpflanzen mit Palisaden transpiriert, Spiraea ulmaria und Veronica chamaedrys, danach kommen die Sonnenformen, die keine Palisaden entwickeln, zu welchen sich noch Allium ursinum zählt, mit dem einige Versuche angestellt worden sind, und zuletzt folgen die sehr wenig transpirierenden Schattenpflanzen, deren Kurven einander sehr nahe kommen.

Die Transpirationssummen pro 10 cm² für die vier ersten Tage waren:

<table>
<thead>
<tr>
<th>Pflanze</th>
<th>Sonne</th>
<th>Transpirationssumme (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiraea ulmaria</td>
<td>"</td>
<td>550,33</td>
</tr>
<tr>
<td>Veronica chamaedrys</td>
<td>"</td>
<td>493,85</td>
</tr>
<tr>
<td>Allium ursinum</td>
<td>"</td>
<td>305,17</td>
</tr>
<tr>
<td>Trientalis europaea</td>
<td>"</td>
<td>292,93</td>
</tr>
<tr>
<td>Actaea spicata</td>
<td>"</td>
<td>285,30</td>
</tr>
<tr>
<td>Majanthemum bifolium</td>
<td>"</td>
<td>285,13</td>
</tr>
</tbody>
</table>
Transpirationsserie I.

29.6. 10h45 — 12h10m vorm. bis 6.7. 8h52m — 10h vorm.

Die übrigen Wägungen sind in den Vormittagsstunden 9h — 10h30m vorgenommen worden.

<table>
<thead>
<tr>
<th>Actaea spicata</th>
<th>Trigonotis</th>
<th>Trigonotis</th>
<th>Majanthemum</th>
<th>Majanthemum</th>
<th>Spinae</th>
<th>Spinae</th>
<th>Veronica</th>
<th>Veronica</th>
</tr>
</thead>
<tbody>
<tr>
<td>eg</td>
<td>g</td>
<td>eg</td>
<td>g</td>
<td>eg</td>
<td>g</td>
<td>eg</td>
<td>g</td>
<td>eg</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30. Juni</td>
<td>70.54</td>
<td>12.73</td>
<td>71.58</td>
<td>10.93</td>
<td>13.34</td>
<td>6.70</td>
<td>65.73</td>
<td>12.68</td>
</tr>
<tr>
<td>1. Juli</td>
<td>76.92</td>
<td>13.67</td>
<td>79.23</td>
<td>11.77</td>
<td>15.40</td>
<td>7.74</td>
<td>73.60</td>
<td>14.20</td>
</tr>
<tr>
<td>2. „</td>
<td>61.53</td>
<td>10.93</td>
<td>60.66</td>
<td>9.01</td>
<td>15.95</td>
<td>8.02</td>
<td>58.39</td>
<td>11.30</td>
</tr>
<tr>
<td>3. „</td>
<td>76.34</td>
<td>13.56</td>
<td>81.46</td>
<td>12.09</td>
<td>18.81</td>
<td>9.46</td>
<td>87.41</td>
<td>16.88</td>
</tr>
<tr>
<td>4. „</td>
<td>—</td>
<td>—</td>
<td>70.00</td>
<td>10.39</td>
<td>—</td>
<td>—</td>
<td>85.65</td>
<td>16.54</td>
</tr>
<tr>
<td>5. „</td>
<td>—</td>
<td>—</td>
<td>103.28</td>
<td>15.34</td>
<td>—</td>
<td>—</td>
<td>107.16</td>
<td>20.69</td>
</tr>
<tr>
<td>6. „</td>
<td>—</td>
<td>—</td>
<td>74.86</td>
<td>11.12</td>
<td>—</td>
<td>—</td>
<td>93.53</td>
<td>18.05</td>
</tr>
</tbody>
</table>

Hessisch, Zur Kenntnis d. Pflanzenlebens schweizerischer Landwiesen.
Fig. 29. Die Tafel zeigt die Transpirationssummen einiger Versuchspflanzen an.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Uhr</th>
<th>t₀</th>
<th>f</th>
<th>Max.</th>
<th>Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.6.</td>
<td>8</td>
<td>16,4</td>
<td>75</td>
<td>Sonnenschein.</td>
<td>Ziemlich frisch N.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16,3</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>17,0</td>
<td>8,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Um 11 Uhr 11,0 98 %.</td>
<td>Schwach</td>
</tr>
<tr>
<td>30.6.</td>
<td>8</td>
<td>15,4</td>
<td>62</td>
<td>Sonnenschein.</td>
<td>Schwach N.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17,6</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>18,0</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Um 11,30 Uhr 11,7 94 %.</td>
<td>Ruhig</td>
</tr>
<tr>
<td>1.7.</td>
<td>8</td>
<td>14,2</td>
<td>86</td>
<td>Bewölkt, 0,1mm Reg. währ. d. Nacht. Schw. N.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>16,1</td>
<td>70</td>
<td>Sonnenschein.</td>
<td>Schwach N.</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11,7</td>
<td>73</td>
<td>17,0</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Himmel wolkenfrei.</td>
<td></td>
</tr>
<tr>
<td>2.7.</td>
<td>8</td>
<td>14,8</td>
<td>72</td>
<td>Sonnenschein.</td>
<td>Schwach N.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17,8</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>12,2</td>
<td>90</td>
<td>18,0</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Himmel wolkenfrei.</td>
<td>Ziemlich frisch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schwach</td>
</tr>
<tr>
<td>3.7.</td>
<td>8</td>
<td>13,8</td>
<td>78</td>
<td>Sonnenschein.</td>
<td>Frisch N.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>14,6</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11,1</td>
<td>76</td>
<td>15,0</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Himmel wolkenfrei.</td>
<td></td>
</tr>
<tr>
<td>4.7.</td>
<td>8</td>
<td>13,5</td>
<td>75</td>
<td>Sehr schwach bewölkt.</td>
<td>Frisch N.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15,2</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>13,5</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7.</td>
<td>8</td>
<td>16,8</td>
<td>50</td>
<td>Sonnenschein.</td>
<td>Schwach N.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18,0</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>14,3</td>
<td>55</td>
<td>20,0</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Himmel wolkenfrei.</td>
<td>Ruhig</td>
</tr>
<tr>
<td>6.7.</td>
<td>8</td>
<td>16,3</td>
<td>65</td>
<td>Sonnenschein.</td>
<td>Schwach N.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>21,8</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>17,6</td>
<td>65</td>
<td>24,0</td>
<td>11,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Himmel wolkenfrei.</td>
<td>Ruhig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schwach W.</td>
</tr>
</tbody>
</table>

Ein Vergleich zwischen der Figur und der obenstehenden Tabelle läßt den Einfluß der Witterung auf die Transpiration ziemlich klar erkennen. Vom 30./6. morgens bis zum 1./7. morgens war es trockener und ein wenig wärmer als vom 29./6. bis 30./6. Die Transpiration war auch bei allen Pflanzen bedeutend lebhafter, obwohl in dieser Nacht ein sehr schwacher Regen fiel. Am 1. Juli war es ziemlich feucht, am Mittag 70 %,
nicht besonders warm, und, wie die Kurventafel zeigt, senkte sich bei allen Arten die Transpiration an sonnenoffenen Standorten mehr als im Schatten. Am 2. Juli war die Luft ziemlich trocken, 55% um zwei Uhr, den ganzen Tag war es völlig heiter und die Transpiration stieg auch bei allen Pflanzen. Der 3. Juli war kühl, die Temperatur betrug nur 14°6 um 2 Uhr, es war ziemlich feucht, 70%0, und der Wind war sehr frisch. Bei den Arten der sonnenoffenen Standorte sank die Transpiration außer bei Spiraea ulmaria1). Bei denjenigen der beschatteten Standorte wurde dagegen die Transpiration ein wenig lebhafter. Vielleicht bedeutet für diese Pflanzen der Wind als transpirationsbefördernder Faktor mehr als für die Sonnenformen. Am 4. Juli war es ein wenig wolky, aber ziemlich trocken, um 2 Uhr 15°2 und 56°0, um neun Uhr 13°5 und 46°0, und am Morgen 5,7. um 8 Uhr 15°0 und 50°0. Die Transpiration stieg auch bedeutend bei allen Pflanzen, um sich wieder zu senken. Eine Ausnahme machten Spiraea und Veronica, diese zeigten eine sehr schwache Steigerung. Dessen ungeachtet war es am 5,7. ziemlich trocken, vielleicht haben wir die Ursache der Transpirations- senkung in dem ruhigeren Wetter zu suchen. Es zeigt sich bei den Pflanzen eine ziemlich schöne Variation, je nach den äußeren Bedingungen. Die ungefähre Feuchtigkeit scheint hierbei von ziemlich großer Bedeutung zu sein; da aber auch Temperatur, Belichtung und Wind gleichzeitig wechselten, ist es unmöglich, völlig klar hierüber zu werden.

Transpirationsserie II.
Beschreibung der Versuchs pflanzen.

Geranium silicium. Sonnenform. wurde im Mai in einen Topf versetzt. Fünf Blätter waren entwickelt und zeigten einen ausgeprägten Sonnenblatthabitus. Die Spitzen der Blattlappen waren rötlich gefärbt. Blattfläche 98,2 cm². Trockengewicht 0,6732 g, die Blattspreiten allein 0,5556 g.

Allium ursinum. Schattenform. wurde im Mai in einen Topf gesetzt, drei etwas kleine, sonst aber sehr schöne Blätter waren entwickelt, dieselben nahmen eine fast horizontale Lage ein. Blattfläche 65,8 cm². Trockengewicht 0,208 g.

1) Dies dürfte hauptsächlich darin seinen Grund gehabt haben, daß ein kleines Blatt von der Versuchs pflanze entfernt worden war, was gewöhnlich die Transpiration bei den übrigen Blättern ein wenig steigert.
2) Die Transpirationszahlen pro 10 cm² Blattfläche sind in cg, pro 1 gr Trockengewicht in g angegeben. Wenn zwei solche Kolumnen mit g vorhanden sind, gibt die erste die Zahlen pro Trg. der ganzen Pflanze, die zweite pro Trg. der Blattspreiten allein an.
Transpirationsserie II.

21. 6. 7—8 h N. M. bis 22. 6. 7—8 h N. M.

Temperatur und Witterung:

<table>
<thead>
<tr>
<th>Zeit</th>
<th>21. 6.</th>
<th>22. 6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhr</td>
<td>9 h N. M.</td>
<td>8 h V. M.</td>
</tr>
<tr>
<td>Luftw.</td>
<td>12°4</td>
<td>17°4</td>
</tr>
<tr>
<td>Luftfeucht.</td>
<td>83 %</td>
<td>57 %</td>
</tr>
</tbody>
</table>

Schatten.

Transpirationsserie III.

Beschreibung der Versuchsplanten.

Geranium silvaticum, Sonnenpflanze, wurde im Mai in einen Topf gesetzt. Sieben schöne Blätter. Sonnenblatthabitus ausgeprägt. Blattfläche 141.6 cm², Trockengewicht 0.655 g, die Blattspreiten allein 0.5448 g.

Geranium silvaticum, Schattenpflanze, ein sehr schönes, kräftiges Individuum wurde im Mai in einen Topf gepflanzt. Viele, sehr große und schöne Blätter. Blattfläche 470.6 cm², Trockengewicht 1.9917 g, die Blattspreiten allein 1.3383 g.

Rubus saxatilis, Schattenpflanze, wurde im Mai, als noch die Blattoansagen klein waren, in einen Topf gesetzt. Drei große, schöne Blätter wurden entwickelt. Blattfläche 97.0 cm², Trockengewicht 0.3739 g.

Convallaria majalis, Sonnenform, die Versuchsindividuen wurden im September in einen Topf gesetzt. Es waren drei blatttragende Sprosse, zwei mit zwei Blättern und einer mit einem Blatte. Ausgeprägter Sonnenblatthabitus. Blattfläche 50.5 cm², Trockengewicht 0.2441 g.

Convallaria majalis, Schattenform, wurde im September in einen Topf gesetzt. Seit Ende April hatten die Individuen im Haselhaine gestanden. Nur ein einziger Sproß mit zwei lebhaft grünen Blättern. Blattfläche 38.9 cm², Trockengewicht 0.1242 g.

Transpirationsserie IV.

Beschreibung der Versuchsplanten.

Geranium silvaticum, Sonnenform. Dieselbe Pflanze wie in Serie III.

Rubus saxatilis, Schattenform. Dieselbe Pflanze wie in Serie III.

Trientalis europaea. Dasselbe Versuchsindividuum wie in Serie I.

Transpirationsserie IV.
10.7. 10 h 20 m — 12 h V. M. bis 15.7. 7—8 h N. M.
Temperatur und Witterung:

<table>
<thead>
<tr>
<th>10.7</th>
<th>8 h V. M.</th>
<th>21 ° 8</th>
<th>51 °</th>
<th>Heiter.</th>
<th>Ruheig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h)</td>
<td>2 h 10 m N. M.</td>
<td>24 ° 5</td>
<td>34 °</td>
<td>(h)</td>
<td>Schw. S.</td>
</tr>
<tr>
<td>(h)</td>
<td>9 h N. M.</td>
<td>18 ° 5</td>
<td>50 °</td>
<td>(h)</td>
<td>Ruhig.</td>
</tr>
<tr>
<td>11.7</td>
<td>8 h V. M.</td>
<td>24 ° 8</td>
<td>48 °</td>
<td>(h)</td>
<td>Schw. S.</td>
</tr>
<tr>
<td>(h)</td>
<td>10 h 45 m V. M.</td>
<td>29 ° 4</td>
<td>29 °</td>
<td>(h)</td>
<td>Schw. S.</td>
</tr>
<tr>
<td>(h)</td>
<td>2 h N. M.</td>
<td>18 ° 8</td>
<td>59 °</td>
<td>(h)</td>
<td>Schw. NO.</td>
</tr>
<tr>
<td>(h)</td>
<td>9 h N. M.</td>
<td>15 ° 7</td>
<td>92 °</td>
<td>(h)</td>
<td>Ruhig.</td>
</tr>
<tr>
<td>12.7</td>
<td>8 h V. M.</td>
<td>20 ° 8</td>
<td>63 °</td>
<td>(h)</td>
<td>Schw. NNO.</td>
</tr>
<tr>
<td>(h)</td>
<td>2 h N. M.</td>
<td>21 ° 2</td>
<td>65 °</td>
<td>(h)</td>
<td>Schw. NNO.</td>
</tr>
<tr>
<td>(h)</td>
<td>9 h N. M.</td>
<td>14 ° 2</td>
<td>92 °</td>
<td>(h)</td>
<td>Ruhig.</td>
</tr>
<tr>
<td>13.7</td>
<td>8 h V. M.</td>
<td>19 ° 9</td>
<td>73 °</td>
<td>(h)</td>
<td>(h)</td>
</tr>
<tr>
<td>(h)</td>
<td>2 h N. M.</td>
<td>21 ° 5</td>
<td>44 °</td>
<td>(h)</td>
<td>Schw. SW.</td>
</tr>
<tr>
<td>(h)</td>
<td>9 h N. M.</td>
<td>16 ° 3</td>
<td>98 °</td>
<td>(h)</td>
<td>(h)</td>
</tr>
<tr>
<td>14.7</td>
<td>8 h V. M.</td>
<td>20 ° 6</td>
<td>83 °</td>
<td>(h)</td>
<td>Ruhig.</td>
</tr>
<tr>
<td>(h)</td>
<td>2 h N. M.</td>
<td>20 ° 0</td>
<td>73 °</td>
<td>(h)</td>
<td>Fr. N.</td>
</tr>
<tr>
<td>(h)</td>
<td>2 h N. M.</td>
<td>21 ° 2</td>
<td>72 °</td>
<td>(h)</td>
<td>Schw. O.</td>
</tr>
<tr>
<td>(h)</td>
<td>9 h N. M.</td>
<td>15 ° 1</td>
<td>100 °</td>
<td>(h)</td>
<td>Bewölk.</td>
</tr>
</tbody>
</table>

Geranium sylvaticum (Sonne) 1097,50 cg 238,75 g 312,21 g.

Solidago virgaurea (Sonne) 143,47 cg 345,50 g 48,38 g.

Trientalis europaea (Sonne) 882,56 cg 74,45 g 117,38 g.

Transpirationsserie V.

Beschreibung der Versuchspflanzen.

Geranium sylvaticum, Sonnenpflanze. Dasselbe Individuum wie in Serie IV.

Geranium sylvaticum, Sonnenpflanze. Dasselbe Individuum wie in Serie IV.

Fragaria vesca, Sonnenform. Wurde Mitte Juni in einen Topf gesetzt. Kleines Individuum mit zwei Blättern, die eine tiefgrüne Farbe mit schwach rötlichem Atrich haben. Es wurden gar keine Krankheiten veränderungen wahrgenommen. Blattfläche 15 cm², Trockengewicht 0,1050 g.

Fragaria vesca, Schattenpflanze. Das Versuchsindividuum wurde Mitte Juni in einen Topf geplant. Drei ebene, lichtgrüne Blätter waren entwickelt. Blattfläche 36,5 cm², Trockengewicht 0,1205 g.

Deutaria bulbifera. Das Versuchsindividuum wurde im September 1900 in einen Topf geplant. Es entwickelte sich seit Ende April im Haselbänken, sehr schönes Individuum, dasselbe blühte Ende Juni und entwickelte später sogar einige Früchte. In den meisten Blattachsen fanden sich kleine Bulbillen. Blattfläche 102,2 cm², Trockengewicht 0,6600 g.

Allium ursinum. Schattenform. Das Versuchsindividuum wurde im April 1901 in einen Topf geplant. Vier schöne, große, tiefgrüne Blätter waren entwickelt. Blattfläche 196,7 cm², Trockengewicht 0,6889 g, die Blattspreiten allein 0,5039 g.

Aethusa cynapium. Ein kleines Individuum wurde Mitte Juni in einen Topf eingesetzt. Es sind gar keine Turgeszenzveränderungen wahrgenommen worden. Blattfläche 32,7 cm², Trockengewicht 0,0825 g, die Blattspreiten allein 0,0635 g.

Transpirationsserie V.

Temperatur und Witterung: Siehe Serie IV.
11.7. 7—9 h N. M. bis 15.7. 7—9 h N. M.

Geranium silvaticum (Sonne) 614,17 cg 183,18 g 233,59 g
- (Schatten) 98,00 cg 35,58 g 48,38 g
Frangula vesca (Sonne) 838,95 cg 119,81 g —
- (Schatten) 107,94 cg 42,70 g —
Dentaria bulbifera (Schatten) 145,78 cg 22,39 g —
Allium ursinum (Schatten) 74,58 cg 29,58 g —
Actaea spicata (Schatten) 88,38 cg 34,39 g —

Transpirationsserie VI.
Beschreibung der Versuchspflanzen.

Achillea millefolium. Sonnenform. Es wurden Mitte Juni mehrere schöne Späpfe in einen Topf eingesetzt. Mehrere Blätter wurden entwickelt, die in ihrem Aussehen völlig mit den auf sonnenoffenen Standorten gewöhnlichen übereinstimmen. In der Versuchszeit waren neun Blätter völlig entwickelt. Bei dieser Pflanze war es unmöglich, die Blattfläche zu bestimmen, die Blätter wurden darum gewogen, da aber die Blattstiele infolge der reichen Entwicklung von Stereom ziemlich schwer sind, so wurde auch das Trockengewicht der transpirierenden Blattspreiten ermittelt. Die Transpirationssumme ist sowohl für die ganzen Blätter als auch für die Blattspreiten allein berechnet worden. Trockengewicht 0,5641 g, die Blattspreiten allein 0,8347 g.

Achillea millefolium. Schattenform. Zwei Späpfe mit je drei schönen breiten Schattenblättern wurden Mitte Juni eingesetzt. Besonders schöne Individuen. Trockengewicht 0,8536 g, die Blattspreiten allein 0,1964 g.

Convallaria majalis. Sonnenform. Zwei Späpfe wurden im September in einen Topf gepflanzt und seit April entwickelten sie sich auf demselben sonnenoffenen Standort. Sehr schöne Individuen. Blattfläche 48,3 cm², Trockengewicht 0,2467 g.

Spiraea ulmaria. Sonnenform. Mitte Juni in einen Topf eingesetzt. Drei, ziemlich schmale Blätter waren entwickelt, ausgeprägter Sonnenblathabitus. Blattfläche 96,0 cm², Trockengewicht 0,8887 g. Blattspreiten allein 0,7031 g.

Spiraea ulmaria. Schattenform. Im Mai in einen Topf gesetzt. Fünf große, breite, schöne Blätter. Blattfläche 354,1 cm². Trockengewicht 1,2515 g, die Blattspreiten allein 0,9143 g.

Majanthemum bifolium. Dasselbe Individuum wie in Serie I.

Stachyris silvatica. Sonnenform. Zwei Individuen wurden im Mai in einen Topf gepflanzt. Sie entwickelten sich sehr schwach auf dem sonnenoffenen Standort. Zwei Späpfe, 10,5 cm mit vier Blattpaaren und 3,5 cm mit drei Blattpaaren. Blätter klein, buckelig, etwas zusammengebogen, bleichgrün. Blattfläche 89,8 cm², Trockengewicht 0,5138 g, die Blattspreiten allein 0,3804 g.

Stachyris silvatica. Schattenform. Gleichzeitig mit der Sonnenform in einen Topf eingesetzt. Zwei Späpfe, 26,5 cm mit fünf. 24,0 cm mit vier Blattpaaren. Die Blätter groß und eben ausgebreitet. Blattfläche 401,9 cm², Trockengewicht 0,5481 g, die Blattspreiten allein 0,2639 g.

Luzula pilosa. Sonnenform. Wurde Mitte Juni eingeplant. Fünf Späpfe mit zusammen 24 größeren und kleineren Blättern. Blattfläche 99,1 cm², Trockengewicht 0,5677 g.

Luzula pilosa. Schattenform. Wurde im Mai eingeplant. Zwei schöne Späpfe. Blattfläche 60,6 cm², Trockengewicht 0,2729 g.

Transpirationsserie VI.
25.7. 6h 35 m — 8h 59m N. M. bis 26.7. 6h 20m — 8h 15m N. M.
Hesselman, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen.

Temperatur und Witterung.

25. 7. 2 h N. M. 26°9 53°% Heiter. SO.
26. 7. 9 h N. M. 18°5 83°% Schw.
26. 7. 8 h V. M. 23°4 62°%
26. 7. 2 h N. M. 25°5 49°%
26. 7. 9 h N. M. 17°6 86°% Ruhhig.

Schatten. — 6,33 cg. 10,87 cg.

Convallaria majalis. Sonne. 157,97 cg. 30,92 cg.
Schatten. 21,72 cg. 8,49 cg.

Spiraea ulmaria. Sonne. 227,55 cg. 24,64 cg. 31,08 cg.
Schatten. 34,36 cg. 10,00 cg. 13,68 cg.

Majanthemum bifolium. Sonne. 112,88 cg. 20,32 cg.
Schatten. 25,38 cg. 7,52 cg.

Stachys silvatica. Sonne. 118,04 cg. 20,63 cg. 27,86 cg.
Schatten. 12,57 cg.

Luzula pilosa. Sonne. 129,16 cg. 22,55 cg.
Schatten. 19,47 cg. 4,32 cg.

Transpirationsserie VII. Besprechung der Versuchspflanzen.

Gewa virale. Sonnenform. Wurde Mitte Juni in einen Topf eingeplant. Zahlreiche schöne Blätter. Blattfläche 277,1 cm², Trockengewicht 2,2774 g, die Blattpreisen allein 2,1994 g.

Gewa virale. Schattenform. Wurde im Mai eingeplant. Besonders schönes Individuum mit 14 großen, breiten Blättern. Blattfläche 533,1 cm², Trockengewicht 2,3911 g, die Blattpreisen allein 1,8750 g.

Convallaria majalis. Dasselbe Versuchsindividuum wie in Serie Nr. III.

Transpirationsserie VII. Dieselben Versuchsindividuen wie in Serie VI.

Temperatur und Witterung.

27. 7. 10 h 10 m—10 h 30 m V. M. bis 7 h 23 m—7 h 30 m N. M.

Gewa virale. Sonne. 121,57 cg. 15,12 cg 16,83 g.
Schatten. 12,13 cg. 2,71 cg. 3,50 g.

Convallaria majalis. Schatten. 12,56 cg. 4,92 cg.

Transpirationsserie VIII. Besprechung der Versuchspflanzen.

29. 7. 12 h 25 m N. M.—1 h 37 m N. M. bis 8 h 10 m—8 h 40 m N. M.

Gewa virale. Sonne. 22,98 cg. 74°% Fast heiter Fr. SW.
Schatten. 21,01 cg. 66°% Fr. S.
9 h N. M. 20°0 94°% Fast bewölk.

Achillea millefolium. Sonne. — 7,34 g. 9,29 g.
Schatten. — 1,62 g. 2,80 g.

Convallaria majalis. Sonne. 20,70 cg. 4,05 cg. 4,08 g.
Schatten. 3,56 cg. 1,39 g. 1,39 g.

Transpirationsserie IX. Besprechung der Versuchspflanzen.

29. 7. 8 h V. M. 22°8 74°% Fast heiter Fr. SW.
29. 7. 2 h N. M. 21°1 66°% Fr. S.
9 h N. M. 20°0 94°% Fast bew. Rumig.

Paris quadrifolia. Schattenpflanze. Im September 1900 wurde ein sehr langer Rhizom davon in einen Topf gesetzt. Besonders schönes Individuum. Steril. Blattfläche 97,5 cm², Trockengewicht 0,3206 g.

Convallaria majalis. Schattenform. Letzte Versuchspflanze in der Serie dieselbe wie in Serie VII.

Transpirationsserie IX.

30. 7. 9 h 50 m—12 h 50 m bis 2, 8. 10 h 15 m—12 h 55 m.
Temperatur und Witterung:

<table>
<thead>
<tr>
<th>Datum</th>
<th>Uhrzeit</th>
<th>Temperatur</th>
<th>Witterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.7.</td>
<td>8h V. M.</td>
<td>22°C</td>
<td>Fast heiter. Schw. NW.</td>
</tr>
<tr>
<td>31.7.</td>
<td>8h V. M.</td>
<td>21°C</td>
<td>Fast heiter. Schw. NW.</td>
</tr>
<tr>
<td>1.8.</td>
<td>1h 23m V. M.</td>
<td>15°C</td>
<td>Ruheig.</td>
</tr>
<tr>
<td>2.8.</td>
<td>8h V. M.</td>
<td>21°C</td>
<td>Schw. W.</td>
</tr>
<tr>
<td>2.8.</td>
<td>8h N. M.</td>
<td>15°C</td>
<td>Schw. S.</td>
</tr>
<tr>
<td>2.8.</td>
<td>2h N. M.</td>
<td>21°C</td>
<td>Schw. S.</td>
</tr>
</tbody>
</table>

Dasselbe Schweb. Mitte Schw. 73 9 9,71 2h 8h — — 2k:n. Drei 9h Schw. den Dasselbe in N. 2h Trockengewicht Dasselbe Ein Hesselina setzt.

Achillea millefolium.
Sonnen. — 87,58 g 114,53 g
Schatten. — 14,46 g 24,68 g

Convolvulus majalis.
Sonnen. 444,70 cg 81,18 g 81,18 g
Schatten. 49,96 cg 20,52 g 20,52 g

Spiraea alnariu.
Sonnen. 541,25 eg 55,33 g 69,79 g
Schatten. 51,03 eg 15,24 g 32,23 g

Majanthemum bifoli.anum.
Sonnen. 187,99 cg 33,82 g 36,02 g
Schatten. 57,50 cg 17,29 g 17,29 g

Stackys silvatica.
Sonnen. 300,33 cg 52,43 g 70,90 g
Schatten. 41,20 cg — —

Luizila pilosa.
Sonnen. 344,61 cg 60,22 g 60,22 g
Schatten. 43,72 cg 9,71 g 9,71 g

Geum rivale.
Sonnen. 469,58 cg 57,13 g 59,15 g
Schatten. 82,34 cg 18,36 g 21,91 g

Paris quadrifolia.
Schatten. 56,50 cg 20,11 g —

Convolvulus majalis.
Schatten. 64,24 cg 19,71 g 19,71 g

Transpirationsserie X.
Beschreibung der Versuchspflanzen.

Aquemone hepatica. Schattenpflanze. Im Mai in einen Topf eingesetzt. Drei schöne Blätter. Blattfläche 24,3 cm²

Aquemone hepatica. Schattenpflanze. Im Mai in einen Topf gepflanzt. Zwei etwas größere Blätter 23,1 cm²

Fragaria vesca. Sonnenform. Mitte Juni in einen Topf eingeplant. In der Versuchszeit waren vier Blätter entwickelt. Blattfläche 34,2 cm², Trockengewicht 0,2568 g, die Blattspreiten allein 0,2035 g.

Fragaria vesca. Schattenform 1. Mitte Juni in einen Topf eingesetzt. Schönes Individuum. Blattfläche 75,8 cm², Trockengewicht 0,2668 g, die Blattspreiten allein 0,2035 g.

Fragaria vesca. Schattenform 2. Dasselbe Individuum wie in Serie V.

Lucizila pilosa. Schattenform. Im Mai in einen Topf eingesetzt. Schönes Schattenindividuum mit langen, schlanken Blättern. Blattfläche 55,5 cm², Trockengewicht 0,1891 g.

Majanthemum bifoli.anum. Schattenform 1. Dasselbe Individuum wie in Serie I.

Majanthemum bifoli.anum. Schattenform 2. Dasselbe Individuum wie in Serie VI.

Convolvulus majalis. Schattenform 1. Drei Sprosse mit einem Blatte. Sept. 1000 in einen Topf eingeplant. Seit Ende April hatten die Individuen in dem Haselhain gestanden. Blattfläche 63,0 cm², Trockengewicht 0,2250 g.

Convolvulus majalis. Schattenform 2. Ein Sproß mit zwei Blättern. Gleichzeitig mit der vorhandenen Pflanze in einen Topf gepflanzt und so in den Haselhain gestellt. Blattfläche 47,7 cm², Trockengewicht 0,1586 g.

Transpirationsserie X.

18.8. 11h — 12h 30m V. M. bis 6h 45m — 8h N. M.
Temperatur und Witterung.

18.8. 8h V. M. 18 9 0 Fast heiter. Fr. W.
2h N. M. 22 9 0 49 9 0
9h N. M. 16 9 2 77 9 0 — Schw. NO.
Anemone hepatica. Schatten. 20,57 cg —

Frangaria vesca. Schatten. 25,97 cg 4,36 g

„ „ Sonne. 80,49 cg 12,74 g

„ „ Schatten. 21,90 cg 6,46 g

„ „ " 16,84 cg 5,36 g

Majanthemum bifolium. " 9,29 cg 2,83 g

„ „ 10,15 cg 3,05 g

Luzula pilosa. " 12,61 cg 7,00 g

Convalaria majalis. " 9,65 cg 2,89 g

Transpirationsserie XI.
Beschreibung der Versuchspflanzen.

Anemone hepatica, Frangaria vesca dieselben wie in Serie X.

Majanthemum bifolium. Dasselbe Individuum wie Nr. 2 in der Serie X.

Luzula pilosa. Dasselbe Individuum wie in Serie VI.

Convalaria majalis. Dasselbe Individuum wie Nr. 2 in der Serie X.

Transpirationsserie XI.
22.8. 10h 43m—12h V. M. bis 23.8. 9h 35m—11h 25m V. M.

Temperatur und Witterung:
22.8. 8h V. M. 17° 4 81° 0 Sehr schw. bewölkt Ruhig.

2h N. M. 22° 0 55° 0 Fast heiter Schw. S.

23.8. 9h V. M. 16° 6 79° 0 Bewölkt Fr. NW.

2h N. M. 19° 0 53° 0 Heiter Fr. NNW.

Anemone hepatica. Schatten. 18,10 cg —

„ „ 19,48 cg 3,25 g

Frangaria vesca. Schatten. 103,21 cg 16,35 g

„ „ 30,87 cg 9,11 g

„ „ 30,70 cg 9,89 g

Majanthemum bifolium. " 20,00 cg 5,86 g

Luzula pilosa. " 9,90 cg 2,20 g

Convalaria majalis. " 16,35 cg 4,92 g

Transpirationsserie XII.
Beschreibung der Versuchspflanzen.

Dieselben Individuen wie in der vorhergehenden Serie.

Transpirationsserie XII.
24.8. 5h 13m—5h 25m V. M. bis 26.8. 12h—12h 20m N. M.

Temperatur und Witterung:
21,8. 2h N. M. 16° 0 78° 0 Fast heiter. Fr. N.

9h N. M. 13° 6 95° 0 Heiter. Ruhig.

22.8. 8h V. M. 17° 4 81° 0 Sehr schw. bew.

2h N. M. 22° 0 55° 0 Fast heiter. Schw. S.

23.8. 9h V. M. 16° 5 79° 0 Bewölkt. Fr. NW.

2h N. M. 19° 0 53° 0 Heiter. Fr. NNW.

24.8. 8h V. M. 13° 6 72° 0 Bewölkt.

2h N. M. 15° 0 51° 0 Heiter.

26.8. 8h V. M. 15° 7 81° 0 Bewölkt. Schw. SW.

2h N. M. 20° 0 68° 0 Heiter. Fr. SW.

Frangaria vesca. Sonne. 390,96 cg 72,95 g

„ „ Schatten. 444,44 cg 42,63 g

„ „ 240,84 cg 44,32 g

Transpirationsserie XIII.
Beschreibung der Versuchspflanzen.

Geranium silvaticum. Sonnenpflanze. Nachdem die Blätter nach einer vorigen vollendeten Serie abgeschnitten worden waren, entwickelten sich wieder viele neue Blätter. Blattfläche 173 cm². Trockengewicht 0,8335 g.

Geranium silvaticum. Schattenpflanze 1. Seit Mai im Topfe. Viele Blätter waren entwickelt. Blattfläche 142 cm², Trockengewicht 0,4345 g.

Geranium silvaticum. Schattenpflanze 2. Im Mai in einen Topf eingegesetzt. Zahlreiche Blätter. 190,9 cm², Trockengewicht 0,6471 g.
Spiraea ulmaria. Sonnenpflanze. Nachdem an dem Versuchsindividuum in der Serie I die Blätter abgeschnitten worden waren, entwickelten sich viele neue Blätter. Blattfläche 304,7 cm², Trockengewicht 2,6530 g, die Blattspreiten allein 2,1607 g.

Convallaria majalis. Dasselbe Individuum wie in Serie III.

Calluna vulgaris. Zwei kleine, junge Individuen wurden Mitte Juli in einen Topf eingesetzt. Trockengewicht 0,7579 g.

Transpirationsserie XIII.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.8.</td>
<td>10h 40m—11h 20m</td>
<td>V. M.</td>
<td>bis 6h 40m—7h 15m</td>
<td>N. M.</td>
</tr>
<tr>
<td>29.8.</td>
<td>8h</td>
<td>V. M.</td>
<td>16 °4</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td>11h 45m</td>
<td>V. M.</td>
<td>18 °6</td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td>6h 30m</td>
<td>N. M.</td>
<td>13 °0</td>
<td>89%</td>
</tr>
</tbody>
</table>

Geranium sylvaticum.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sonne.</td>
<td>110,50 cg</td>
<td>12,05 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schatten.</td>
<td>17,32 cg</td>
<td>5,75 g</td>
</tr>
</tbody>
</table>

Fragaria vesca.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sonne.</td>
<td>96,49 cg</td>
<td>15,28 g</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schatten.</td>
<td>52,30 cg</td>
<td>7,73 g</td>
</tr>
</tbody>
</table>

Spiraea ulmaria.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>28,27 cg</td>
<td>5,56 g</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,49 g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Convallaria majalis.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sonne.</td>
<td>245,52 cg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schatten.</td>
<td>135,25 cg</td>
<td></td>
</tr>
</tbody>
</table>

Paris quadrifolia. Dasselbe Individuum wie in Serie IX. Besonders schön.

Allium ursinum. Schatten- und Sonnenformen dieselben wie in Serie V.

Convallaria majalis. Schatten- und Sonnenformen dieselben wie in Serie V.

Transpirationsserie XIV.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.6.</td>
<td>9h 50m</td>
<td>17 °6</td>
<td>58 %</td>
<td>Heiter. Schw. S.</td>
</tr>
<tr>
<td></td>
<td>2h N. M.</td>
<td>20 °4</td>
<td>58 %</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>9h N. M.</td>
<td>12 °4</td>
<td>83 %</td>
<td>Ruhig.</td>
</tr>
<tr>
<td>22.6.</td>
<td>8h V. M.</td>
<td>17 °4</td>
<td>57 %</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>2h N. M.</td>
<td>23 °0</td>
<td>38 %</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>9h N. M.</td>
<td>11 °9</td>
<td>96 %</td>
<td>"</td>
</tr>
<tr>
<td>23.6.</td>
<td>8h V. M.</td>
<td>19 °0</td>
<td>68 %</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>2h N. M.</td>
<td>20 °6</td>
<td>58 %</td>
<td>Schw. O.</td>
</tr>
<tr>
<td></td>
<td>9h N. M.</td>
<td>13 °9</td>
<td>96 %</td>
<td>Ruhig.</td>
</tr>
</tbody>
</table>

Allium ursinum.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sonne.</td>
<td>245,52 cg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schatten.</td>
<td>135,25 cg</td>
<td></td>
</tr>
</tbody>
</table>

Convallaria majalis.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sonne.</td>
<td>185,01 cg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schatten.</td>
<td>86,19 cg</td>
<td></td>
</tr>
</tbody>
</table>

Paris quadrifolia.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Zeit</th>
<th>V. M.</th>
<th>Schw. SW.</th>
<th>Temperatur und Witterung;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sonne.</td>
<td>202,14 cg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schatten.</td>
<td>160,35 cg</td>
<td></td>
</tr>
</tbody>
</table>

Hiermit sind die wichtigsten meiner Transpirationsserien mitgeteilt. Die bekanntgegebenen Daten beziehen sich teils auf dieselbe Oberfläche, teils auf dasselbe Trockengewicht. Es drängt sich einem nun die Frage auf: Inwieweit können diese Berechnungs-Methoden Anwendung finden, wenn man einen wahrem Ausdruck für die Transpiration erhalten will? Ein Blick auf die Tabellen zeigt, daß die Trans-

pirationswerte verschieden ausfallen, je nach der ungleichen Berechnungsmethode, in vielen Fällen findet eine Umkehrung der relativen Transpirationsgrößen statt, wenn die vorher für dieselbe Blattfläche berechneten Transpirationszahlen auf dasselbe Trockengewicht bezogen und umgerechnet werden.

Bei der Berechnung des Flächeninhaltes der transpirierenden Organe einer Pflanze sind stets nur die Blätter berücksichtigt worden, der Flächeninhalt der Blattstiele etc. wurde dabei außer acht gelassen. Der hierdurch entstehende Fehler dürfte jedoch sehr unbedeutend sein, die physiologischen Erfahrungen, ebenso die anatomischen Untersuchungen zeigen, daß die Blätter die eigentlichen Transpirationsorgane sind. Durch Wegnahme der Blätter hörte die Steigung des Wassers im Stengel auf, wenn Dixon (I) mit Pflanzen in einer dampfgesättigten Atmosphäre experimentierte. Da es nicht möglich war, den besonderen Anteil der Blattstiele, Stengel etc. bei der Transpiration zu bestimmen, so glaube ich, daß es richtiger ist, dieselben hierbei unberücksichtigt zu lassen und die Transpiration nur nach dem Flächeninhalt der Blattspreiten zu berechnen. Die Fehler würden ohne Zweifel größer werden, wenn die Transpirationszahlen nach der Gesamtfläche berechnet würden und die ungleichen Organe als gleich transpirierend angesehen würden.

Die Berechnung nach demselben Flächeninhalt hat auf jeden Fall ihren großen Wert. Die ungleiche Dicke des Blattes ist in vielen Hinsichten ein Ausdruck für die Anpassung der Pflanzen an äußere Bedingungen, je dünner die lichtabsorbierenden Organe sind, desto mehr Licht wird ceteris paribus von derselben Blattmasse absorbiert. Wenn wir aber die physiologischen Leistungen des Blattes nach demselben Flächeninhalt berechnen und ungleich gebaute Blätter miteinander vergleichen, so ist der Vergleich nicht einwandfrei; ein qcm eines Blattes repräsentiert nämlich nicht immer dieselbe Zahl Zellen, wenn wir z. B. ein Sonnen- und ein Schattenblatt miteinander nach dem Flächeninhalt vergleichen, so vergleichen wir in den meisten Fällen eine ungleiche Zahl von Zellen.

Für das nähere Studium der Anpassungerscheinungen bietet also ein Vergleich der physiologischen Leistungen derselben Blattfläche den besten und richtigsten Ausgangspunkt in vielen Fällen. Wenn ein Sonnenblatt per qcm mehr Assimilationen bildet als ein Schattenblatt bei derselben Beleuchtung, so zeigt dies, daß das Sonnenblatt einen größeren Teil der gebotenen Energie anwenden kann. Wollen wir dagegen die ungleichen Arten in Hinsicht auf die verrichtete Arbeit vergleichen, so ist das einzig richtige, die Zahl und Größe der lebenden Zellen zu berücksichtigen. Dies ist indessen so gut wie unmöglich auszuführen. Das Trockengewicht kann ein Ausdruck für die Zahl und Größe der Zellen angesehen werden, aber mit vielen Fehlern beladen. Das eine Blatt enthält z. B. relativ mehr tote Zellen, Stereombündel etc., als das andere etc. Tatsächlich haben auch die nach demselben Trockengewicht berechneten Trans-
pirationswerte oft eine unregelmäßige Variation gezeigt, während die nach derselben Blattfläche berechneten Werte gute und unzweideutige Ergebnisse geliefert haben.

Zuerst werden hier die nach demselben Flächeninhalt berechneten Werte näher in Betracht gezogen. Wenn diese auch einen ziemlich großen Wechsel aufweisen, so haben sich doch immer zwei Erscheinungen bei allen Serien gezeigt, nämlich erstens die im Vergleich mit den Sonnenpflanzen sehr geringe Transpiration der Schattenpflanzen und zweitens das unerwartete Verhältnis, daß die Blätter mit Palisaden an sonnenoffenen Standorten mehr transpirieren als solche, die keine scharfe Differenzierung im Blattbau haben. Unsere Untersuchungen datieren im allgemeinen von heiteren Tagen, wo wahrscheinlich die Unterschiede zwischen Sonnen- und Schattenpflanzen ausgeprägter sind, als an träben. Die Unterschiede zwischen den Pflanzen der beschatteten Standorte und denjenigen der sonnenoffenen Wiesen sind oft sehr groß. Aus den angeführten Tabellen werden hier folgende Werte angeführt:

<table>
<thead>
<tr>
<th>Ausweis</th>
<th>29. 6.—3, 7.:</th>
<th>30. 7.—2, 8.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiraea ulmaria</td>
<td>8,19: 1,00.</td>
<td>Convallaria majalis</td>
</tr>
<tr>
<td>Veronica chamaedrys</td>
<td>6,07: 1,00.</td>
<td>”</td>
</tr>
<tr>
<td>Majanthemum bifolium</td>
<td>5,20: 1,00.</td>
<td>Spiraea ulmaria</td>
</tr>
<tr>
<td>Tiendaquis europaea</td>
<td>4,02: 1,00.</td>
<td>Stachys silvatica</td>
</tr>
<tr>
<td>Geranium silvaticum</td>
<td>5,95: 1,00.</td>
<td>Luzula pilosa</td>
</tr>
<tr>
<td>Convallaria majalis</td>
<td>3,21: 1,00.</td>
<td>Geum rivale</td>
</tr>
<tr>
<td>21, 6.—22, 6.:</td>
<td>29, 7.:</td>
<td></td>
</tr>
<tr>
<td>Allium ursinum</td>
<td>2,80: 1,00.</td>
<td>Convallaria majalis</td>
</tr>
<tr>
<td>10, 7.—15, 7.:</td>
<td>19, 8.:</td>
<td></td>
</tr>
<tr>
<td>Geranium silvaticum</td>
<td>7,66: 1,00.</td>
<td>Fragaria vesca</td>
</tr>
<tr>
<td>11, 7.—15, 7.:</td>
<td>22, 8.:</td>
<td></td>
</tr>
<tr>
<td>Geranium silvaticum</td>
<td>6,17: 1,00.</td>
<td>”</td>
</tr>
<tr>
<td>Fragaria vesca</td>
<td>7,77: 1,00.</td>
<td>Fragaria vesca</td>
</tr>
<tr>
<td>25, 7.—26, 7.:</td>
<td>21, 8.—26, 8.:</td>
<td></td>
</tr>
<tr>
<td>Stachys silvatica</td>
<td>9,00: 1,00.</td>
<td>”</td>
</tr>
<tr>
<td>Convallaria majalis</td>
<td>7,18: 1,00.</td>
<td>Fragaria vesca</td>
</tr>
<tr>
<td>Spiraea ulmaria</td>
<td>6,70: 1,00.</td>
<td>”</td>
</tr>
<tr>
<td>Luzula pilosa</td>
<td>6,40: 1,00.</td>
<td>29, 8.:</td>
</tr>
<tr>
<td>Majanthemum bifolium</td>
<td>4,52: 1,00.</td>
<td>Geranium silvaticum</td>
</tr>
<tr>
<td>27, 7.:</td>
<td>”</td>
<td>”</td>
</tr>
</tbody>
</table>
| Geum rivale | 10,16: 1,00. | Aus allen diesen Zahlen geht hervor, daß an heiteren Sommertagen, falls der Boden genug Feuchtigkeit enthält, die Transpiration an sonnenoffenen Standorten diejenige im Schatten mit höchst bedeutenden Werten übertrifft. Die Unterschiede sind größer, als man vielleicht hätte erwarten sollen. Die Sonnenformen können sogar bisweilen zehnmal mehr Wasser pro Tag abgeben als die Schattenpflanzen. Prüfen wir die Erhöhung der Transpiration bei verschiedenen Arten näher, so finden wir eine ziemlich unregelmäßige Variation, doch scheinen die Arten,
welche denselben oder wesentlich denselben Bau in Sonne und Schatten haben, keine größeren Erhöhungen in der Sonne zu erleiden, als diejenigen, welche mehr oder minder weitgehende Veränderungen aufweisen. Die Variation ist in dieser Hinsicht groß; das hier gesammelte Material ist zu gering, um bestimmte Schlüsse zuzulassen. Es scheint jedoch, als ob sich die verschiedenen Arten ungefähr gleich verhalten.

lung der Epidermis sowie durch Zahl und Lage der Spaltöffnungen erreicht.\(^1\)

In diesem Zusammenhang ist darauf hinzuweisen, daß die lebhaft transpirierenden Pflanzen mit Palissadenzellen und einem scharf differenzierten Blattbau, wie *Fragaria vesca*, *Geranium silvaticum*, *Veronica chamaedrys*, *Solidago virgaurea* eine bedeutend größere Zahl von Spaltöffnungen auf derselben Blattfläche haben, als die schattenliebenden und einfacher gebauten Arten wie *Majanthemum*, *Actaea*, *Allium*, *Convallaria* etc.

Die Sonnenblätter der Laubwiesepflanzen mit ihren dünnwandigen Epidermiszellen, ihrem ziemlich lakunösen Blattgewebe, ihren reichlichen Spaltöffnungen und ihren gut ausgebildeten Palissaden stellen einen Blatttypus dar, der geeignet ist, bei guter Zufuhr von Wasser und bei hohem Lichtgenuß lebhaft zu assimilieren und lebhaft zu transpirieren. Einige Transpirationswerte für 24 Stunden werden hier betreffs meiner Versuchsobjekte angeführt. Pro 10 qem transpirierten:

\[
\begin{align*}
5. & 7. 10 \ h \ 17 \ m \ - \ 10 \ h \ 48 \ m \ V. \ M. \\
& Spiraea ulmaria 187,88 \ cg. \\
& Veronica chamaedrys 188,14 \ cg. \\
11. & 7. 9 \ h \ 45 \ m \ V. \ M. \ - \ 12.7. 10 \ h \ 20 \ m \ V. \ M. \\
& Geranium silvaticum 292,75 \ cg. \\
& Solidago virgaurea 202,43 \ cg. \\
12. & 7. 7 \ h \ 15 \ m \ N. \ M. \ - \ 13.7. 7 \ h \ 20 \ m \ N. \ M. \\
& Fragaria vesca 226,00 \ cg. \\
25. & 7. 7 \ h \ 30 \ m \ N. \ M. \ - \ 26.7. 7 \ h \ 00 \ m \ N. \ M. \\
& Spiraea ulmaria 227,55 \ cg. \\
\end{align*}
\]

Leider liegen noch sehr wenige, in der freien Natur ausgeführte Untersuchungen vor, die mit diesen hier gewonnenen Transpirationsdaten einen Vergleich gestatten können, und also eine Vorstellung möglich machen, ob diese zuletzt angeführten Zahlen relativ hoch sind oder nicht. Doch scheinen sie eine lebhafter Transpiration anzuzeigen. Giltay (I) hat mit der Sonnenblume besonders genaue Versuche angestellt; dabei transpirierte diese schnell wachsende Pflanze während der Versuche, die im Wageningen im Juli Sommer 1898 ausgeführt worden sind, durchschnittlich 0,6 g pro dm\(^2\) Blattfläche in der Stunde, was nach der hier angewandten Methode für Berechnung der Blattfläche 288 cg pro 10 cm\(^2\) und pro Tag bedeutet. Pfeffer (I pag. 233) gibt weiter an, daß die Pflanzen an heiteren Tagen in 24 Stunden gewöhnlich 1—10 gr pro dm\(^2\).\(^2\)

\(^2\) Wahrscheinlich durch einen Druckfehler steht bei Pfeffer (I. e.) cm\(^2\) statt dm\(^2\).
transpirieren, eine Angabe, welche dafür spricht, daß die hier gefundenen Daten im allgemeinen als ziemlich hoch anzusehen sind.

Betrachten wir nun die erhaltenen Transpirationszahlen, nach demselben Trockengewicht berechnet, etwas näher, so finden wir nicht überall dieselbe Regelmäßigkeit wieder. Gewöhnlich werden nun auch die Werte der Pflanzen mit Palissadensäden höher, die Unterschiede sind jedoch oft sehr gering, und bisweilen trifft das Umgekehrte ein, nämlich bei einigen Arten in der Serie 29./7.—2./8. Die erhaltenen Resultate lassen doch keineswegs vermuten, daß die Schattenpflanzen an den sonnenoffenen Standorten, nach demselben Trockengewicht gerechnet, mehr transpirieren, eher das Gegenteil. Die erhaltenen Ergebnisse scheinen anzudeuten, daß die Pflanzen verschiedener Arten auf demselben Standort ungefähr gleichmäßig mit dem Wasser haushalten, d. h. daß dieselbe Pflanzenmassen pro Tag ungefähr dieselbe Menge Wasser verbrauchen.

Wenn die Schattenpflanzen in der Sonne also keine größere Transpiration haben als die Sonnenpflanzen, so kann doch die erhöhte Transpiration für diese Pflanzen schon nachteilig genug sein. Die Schattenpflanzen haben wahrscheinlich, den eigentümlichen Verhältnissen ihrer Standorte angepaßt, ein niedriges Transpirationsoptimum, besonders in dem letzten Teil ihrer Entwicklung, wo die Laubbäume schon belaubt sind. Auch dürften die Wasserleitbahnen nicht für einen größeren Anspruch geschaffen sein. Übrigens wäre es vielleicht eine lohnende Aufgabe, eine komparative Untersuchung über die Ausbildung der wasserleitenden Elemente im Verhältnis zu der Größe der Blattfläche bei Sonnen- und Schattenpflanzen vorzunehmen. Eine solche physiologisch-anatomische Untersuchung würde den Vorteil haben, sich auf experimentelle Erfahrung stützen zu können, sowohl betreffs der Bedeutung der zu untersuchenden Gewebs- elemente als auch betreffs der Lebenserscheinungen der genannten Pflanzengruppen.

Wenn wir wieder diese Transpirationszahlen nach demselben Trockengewicht für die Pflanzen im Schatten und auf der sonnenoffenen Wiese miteinander vergleichen, so sind die Unterschiede darum geringer, weil die Blätter im Schatten dünner

In dem größeren Vermögen, dem Boden Wasser zu entziehen, haben wir sicherlich bei den Sonnenpflanzen eine Anpassungsercheinung von größter Wichtigkeit vor uns. Einige Observationen, welche dies andeutten, mögen in diesem Zusammenhang
referiert werden: Im Sommer 1899 und besonders im Sommer 1901 hatten die Laubwiesenpflanzen viel durch die Trockenheit zu leiden und 1901 im letzten Teil des Juli trat ein Stillstand der Vegetation ein. Es war dabei von Interesse, verschiedene Arten und verschiedene Lokalitäten zu beobachten. An den sonnenoffenen Lokalitäten begannen die mehr schattennliegenden Arten zuerst Krankheitserscheinungen zu zeigen, so z. B. Aetha spicata, Majanthemum, Stachys, Convallaria, Dentaria, Allium u. a. Sie welkten jedoch noch nicht, aber bei einer Turgesenzenz, bei welcher die Blätter völlig steif waren, begannen die Blatt spitzen zu verdorren und die Zerstörung des Blattgewebes schritt von da aus weiter gegen die Blattbasis hin. Es wurden auch einige Transpirationsversuche mit solchen kranken Pflanzen gemacht und unter anderen auch mit Paris quadrifolia, welche mit Geranium silvaticum verglichen wurde.

Transpirationsserie XV.

Beschreibung der Versuchspflanzen.

Geranium silvaticum. Dasselbe Individuum wie in Serie IV.

10.7. 10 h 40 m V. M. — 11.7. 9 h 25 m V. M.

Paris quadrifolia 85,54 cm 15,84 g.

10.7. 12 h 14 m V. M. und 11.7. 9 h 45 m V. M.

Geranium silvaticum 25,078 cm 55,57 g, 72,67 g.

Bei Paris quadrifolia vertrockneten die Blattspitzen bald, und das Absterben des Blattgewebes erstreckte sich allmählich bis an die Blattbasis. Das größere Transpirationsvermögen, welches die Sonnenpflanzen besitzen, dürfte hierbei sogar als ein Schutz gegen schädliche Erwärmung wirken. Für das Gedeihen der meisten Pflanzen auf sonnenoffenen Teilen der Laubwiesen ist ohne Zweifel gerade ein Vermögen, durch Transpiration einer nachteiligen Erwärmung durch Sonnenstrahlen vorzubringen, von allerhöchster Bedeutung und spielt bei der Ökonomie dieser Pflanzen eine große Rolle. Die Transpiration dürfte überhaupt nicht nur eine notwendige physikalische Erscheinung bei den in die Luft ragenden, wasserhaltigen Pflanzenorganen sein, sondern überhaupt ein für die normale Entwicklung der Pflanzenorgane sehr wichtiger Lebensvorgang, der sowohl für den Transport der Mineralbestandteile der Pflanzen als auch für die Verwendung der für die Pflanzen geeigneten zugeschalteten Energie in vieler Hinsicht große Bedeutung hat (vergl. z. B. Müller-Thurgau (I), wie auch Jumelle I). Bei einer physiologischen Auffassung der Transpiration, die sich auf viele Untersuchungen der letzten Zeit stützen kann, ist es verfrüht, nach dem Bau der Blätter ihr Transpirationsvermögen zu beurteilen. Alle Konstruktionseigentümlichkeiten, wie Zahl und Lage der Spaltöffnungen, Ausbildung der Epidermis, welche als transpirationshemmend angesehen werden, beziehen sich auf die physikalische Seite der Transpiration, nicht auf die rein physiologische. In Zeiten von Wassermangel spielen sie zwar eine große
Rolle, das Verdampfen der Organe zu vermindern, das Transpirationsvermögen dürfte aber von der äußeren und inneren Konstruktion des Blattes in gewissem Grade unabhängig sein.

Für die Physiognomie der Laubwiesen auf den äußeren Scheereinseln ist ohne Zweifel die hohe, relative Luftfeuchtigkeit von großer Wichtigkeit. Das ziemlich allgemeine Vorkommen von vielen Schattenpflanzen an sonnenoffenen Standorten daselbst dürfte hierin seine Ursache haben. Wie besonders die Transpirationsserie vom 29. Juni bis zum 6. Juli zeigte, übt wahrscheinlich die relative Luftfeuchtigkeit einen nicht unbeträchtlichen Einfluß auf die Transpiration der sonnenoffenen Wiesen aus, was eine für viele Pflanzen nachteilige Transpiration verhindern kann. Auf den äußeren, kleinen Scheeren, die den äußersten Rand am Meere bilden, treten auch in der Vegetation viele Eigentiümlichkeiten auf, was auch seinen Grund in der hohen Feuchtigkeit hat. Es ist z. B. dort nicht gerade selten, daß wahre Sumpfpflanzen, wie *Puccedaniun palustre, Epilobium palustre, Lythrum salicaria* in den kleinen Rissen wachsen, und diese bilden dann zusammen mit wirklichen Felsennpflanzen, wie *Sedum telephium, Sedum acre*, und einigen anderen sehr eigentümlichen, kleinen Pflanzenformationen mit einer Bodendecke aus *Cladina rangiferina*. Aber auch der Boden und besonders die reichliche Humusbildung haben wohl Anteil hieran.

Die Anzahl der hier gemachten Transpirationsversuche ist gewiß nicht groß, doch habe ich dieselben ein wenig ausführlicher beschrieben, weil bis jetzt so wenige derartige in der Natur gemachte Versuche vorliegen. Für die allgemeine Ökologie der Pflanzen ist die Transpiration immerhin eine der wichtigsten Erscheinungen der Pflanzenwelt. Das Studium derselben scheint mir dann am fruchtbarsten zu sein, wenn man die Transpiration mehr als bis jetzt als eine notwendige Erscheinung betrachtet, von welcher die Pflanzen mannigfaltigen Nutzen ziehen können.

Kap. X. Rückblick auf die erhaltenen Ergebnisse, die pflanzengeographischen Faktoren der Laubwiesen.

Unterschiede, die wenigen Prozente, welche vom Pflanzenleben der Laubwiesen etwas Wesentliches aussagen, sondern die größeren, weiten Unterschiede. Die Hauptzüge der erhaltenen Ergebnisse aber haben einen allgemeinen Wert und geben mit Sicherheit eine im wesentlichen allgemein gültige Vorstellung über Ernährungs- und Transpirationerscheinungen bei Pflanzen in Laubwiesen und ähnlichen Pflanzenformationen.

Auf der anderen Seite ist in Betracht zu ziehen, daß die Pflanzenformationen Resultate von ungleichen organischen und anorganischen Faktoren sind.

Was indessen immer das Studium der Pflanzengeographie, besonders der ökologischen, erschwert und hindert, diese als eine exakte Wissenschaft zu behandeln, ist der Umstand, daß wir hierbei stets mit einer Kombination von unzähligen Faktoren rechnen müssen. Diese Faktoren wirken auch gegenseitig aufeinander ein und können einander teilweise ersetzen, sie lassen darum alle möglichen Kombinationen zu. Schwaches Licht und große Luftfeuchtigkeit haben auf die Pflanze in vielen Hinsichten denselben Effekt, sie können einander auch ersetzen und jeder für sich dasselbe Resultat in der Organisation bewirken. Durch das genaue Verfolgen der Lebenserscheinungen können wir höchstens eine exakte Beschreibung der Pflanzenformationen erzielen, nicht aber die Pflanzengeographie zu dem Range einer experimentellen Wissenschaft erhöhen.

Ein Studium über den Lichtgenüß und das Lichtbedürfnis der Pflanzen muß also, wenn die ganze Konstruktion und alle physiologischen Eigenschaften der beschatteten Pflanzen völlig aufgeklärt sein werden, auf die Beziehungen der Pflanzen zu verschiedenen Bodenarten Rücksicht nehmen. Die diesbezüglichen Anpassungen äußern sich zweifelssohne sowohl in der äußeren Organisation, als auch in besonderen Eigenschaften der Wurzelzellen, insbesondere in den osmotischen und diosmotischen Eigenschaften der letzteren.

Überhaupt entwickeln die meisten wirklichen Schattenpflanzen, welche an den am meisten beschatteten Standorten fortkommen können, alle ihre Assimilationsorgane im Frühling. Dieser Vorgang ist in dieser Hinsicht eine weit mehr ausgeprägte periodische Erscheinung als bei den Sonnenpflanzen, die oft den ganzen Sommer hindurch beblätterte Sprosse entwickeln. *Mercurialis perennis, Trionialis europaea, Anemone hepatica, Orobus*
rernus, die Convallariaeaceae, Actaea spicata, Allium ursinum, Dentaria bulbifera, Pulmonaria officinalis, die entweder den ganzen Sommer hindurch oder nur im Vorsommer und Anfang des Nachsommers assimilieren, entwickeln ihre Assimilationsorgane im frühzeitigen Frühling. Unter normalen Umständen kommen dann, wenn die Belaubung der Bäume schon vollständig ist, keine Blätter mehr zur Entwicklung. Die Anlagen der neuen Sprosse, die durch die Assimilationsarbeit erzeugt werden, sind immer in den Boden gesteckt, ruhende, geschlossene Knospen. Die Entwicklung der Assimilationsorgane ist also streng an eine bestimmte Zeit gebunden, was auch für andere Schattenpflanzen zutreffen dürfte. Was für eine große Bedeutung das stärkere Frühlingslicht für die normale Entwicklung der Assimilationsorgane hat, geht am deutlichsten aus dem Kapitel VIII hervor. Es gibt zwar einige Schattenpflanzen, die auch im Sommer, wenn die Bäume schon völlig belaubt sind, noch ihre Blätter entwickeln, nämlich unter den in dieser Abhandlung genannten Arten Campanula latifolia und Stachys silvatica; diese treten jedoch, meinen Beobachtungen nach, nie auf stärker beschatteten Standorten zahlreich auf, dort werden sie nämlich steril und erreichen eine bloß unvollständige Entwicklung. Es dürfte auch kein Zufall sein, daß Stachys silvatica, Spiraea ulmaria und Solidago virgaurea in den Eschenhainen gut fortkommen und blühen, in den Haselhainen aber entweder ganz fehlen oder auch wie Spiraea und Solidago steril werden, höchstens aber einige kümmerliche Blütenstände mit einigen spärlichen Blüten auf den lichtesten Punkten entwickeln. Die meisten Pflanzenarten, welche im Sommer auf den sonnenloffen Wiesen blühen, kommen auch in den Haselbeständen entweder nicht vor oder bleiben steril (siehe pag. 20).

In dem Fehlen des stärkeren Frühlingslichtes haben wir wohl auch die Ursache zu suchen, daß die Fichtenbestände bei demselben oder sogar einem höheren Lichtgenüß eine weit ärmere Schattenflora beherbergen, als die Haselhaine. Die besondere Art von Humus, zu welcher die vermodernden Fichtennadeln Anlaß geben, hat wohl auch Anteil hieran, derselbe ist aber wahrscheinlich von untergeordneter Rolle. Wenn in diesen Fichtenbeständen gelichtet wird, ist nämlich dieser Boden ohne weitere Veränderungen sofort bereit, eine schöne Humusflora aus Dentaria bulbifera, Stachys silvatica, Milium effusum, Melica nutans, Anemone hepatica, Anemone nemorosa u. a. zu ernähren. Daß die Wacholderbestände bei demselben Lichtgenüß eine weit ärmere Schattenvegetation beherbergen, dürfte auch seine Ursache im Fehlen des stärkeren Frühlingslichtes haben.

Aus allen diesen Tatsachen geht die Bedeutung des stärkeren Frühlingslichtes hervor. Es gibt nun eine ganze Gruppe wirklicher Waldpflanzen, welche in ihrer ganzen Assimilations- und Ernährungsarbeit noch mehr als die hier genannten davon abhängig sind, nämlich viele Frühlingspflanzen: Anemone nemorosa und ranunculoides, Ranunculus ficaria, Corydalis-Arten, wie

Von noch größerer Bedeutung als die Kenntnis des morphologischen Aufbaues dieser Pflanzen wäre das Studium, festzustellen, in welchem Grade die Schattenpflanzen den Humus als

Aus den Untersuchungen über die Kohlensäureassimilation geht ganz klar hervor, daß die Sonnepflanzen mit einem weit reicheren Nahrungskonsum zu arbeiten haben, als die Schattenpflanzen. Dieser Umstand mag in vieler Hinsicht die Verschiedenheit in der äußeren und inneren Konstruktion dieser Pflanzen beherrscht haben. Es ist nicht besonders leicht, eine diesbezügliche Untersuchung vorzunehmen, eine solche würde eine genauere Kenntnis vieler Lebenserscheinungen bei diesen und anderen Pflanzen erfordern, als die, welche wir bis jetzt haben. Es scheint mir jedoch wichtig zu sein, die besonderen Charaktere und Eigentümlichkeiten der Sonnen- und Schattenpflanzen nicht nur als direkte Anpassungen gegenüber dem Lichte aufzufassen, sondern auch die Folgen von den ungleichen Nahrungsbedingungen in Betracht zu ziehen.

Als eine besondere Eigentümlichkeit der Schattenpflanzen, die ich als eine Folge von ihrem beschränktem Nahrungskonsum ansehen will, ist die sehr langsame Entwicklung vom Samen bis zu einer blühenden Pflanze hervorzuheben. Viele dieser Pflanzen brauchen hierzu nach Untersuchungen von Warming (II), Irmisch, Cleve (I), Brundin (I) u. a. viele Jahre, so z. B. Anemone nemorosa und ranunculoides, Polygonatum multiflorum, Dentaria bulbifera und viele andere.

Man hat sich bei der Erklärung der Anpassungsscheinungen im allgemeinen damit begnügt, die Zweckmäßigkeit der besonderen Baueigentümlichkeiten zu erklären, wie diese aber zustande kommen, wie die Reize, welche die Pflanzen empfangen, in dem Pflanzenkörper ausgelöst werden, und welche Reize von einander auslösenden Momenten dabei ins Spiel kommt, darüber wissen wir bis jetzt so gut wie gar nichts. Es scheint mir jedoch, daß wir in dem ungleichen Nahrungskonsum ein wichtiges Moment bei der Reizauslösung zu suchen haben.

In derselben Richtung tätig und von Bedeutung mag auch die ungleiche Transpiration sein. Um aber die Bedeutung dieser Lebenserscheinung richtig auffassen zu können, muß man nicht bloß alleinige transpirationfördernde oder transpirationhemmende Konstruktionen anfindig zu machen suchen, sondern man muß auch die Bedeutung und die Wichtigkeit des Wasserstromes für den Nahrungstransport innerhalb der Pflanze, für die Regulierung der Temperatur in den Blättern etc. dabei in Betracht ziehen.
Die Pflanzen sind nicht nur von einem einseitigen Anpassungsstandpunkt aus zu betrachten, sondern müssen auch als Organismen geschätzt werden, die unter verschiedenen Bedingungen und auf ungleiches Resultat hin arbeiten.

Für ein tieferes Verständnis mehrerer Pflanzenarten waren ohne Zweifel physiologische Monographien über gewisse, mehr charakteristische Pflanzen sehr wünschenswert. Solche würden auch ohne Zweifel ein ausgezeichnetes Material liefern für ein besseres Verständnis betreffs vieler ökologischer und pflanzengeographischer Fragen, ja, ich gehe soweit, zu glauben, daß die ganze Pflanzenbiologie in der Zukunft sehr viel gewinnen wird durch wohlgedacht und gut ausgeführte physiologische Monographien über bestimmte, charakteristische Pflanzen, ähnlich wie zur Zeit von Irmisch die Organographie eine große Erweiterung erfuhr durch schöne organographische Arbeiten über besondere Pflanzenarten.

Es war nicht meine Absicht, zu versuchen, eine so schwierige und weitgehende Frage zu beantworten, warum eine Pflanze unter gewissen äußeren Bedingungen fortkommen kann, unter anderen aber nicht, sondern ich wollte mir nur eine empirisch gewonnene Vorstellung verschaffen, wie die Pflanzen unter den verschiedenen äußeren Bedingungen der Laubwiesen tatsächlich reagieren.

Zu einem besseren Überblick werden hier in den folgenden Punkten die wichtigsten Momente und Ergebnisse zusammengefaßt.

2. In Schweden sind die Laubwiesen sehr verbreitet waren es aber früher noch mehr, sie erstreckten sich da weiter nach Norden und waren auch allgemeiner innerhalb ihres jetzigen Verbreitungsgebietes. In der Jetztzeit kommen sie am meisten in den Küstengegenden und um die größeren Binnenseen herum vor.

3. In Uppland haben die Laubwiesen eine stark östliche Verbreitung, sie entwickeln sich noch an den Küsten auf dem neuen Terrain, das durch Verlandung oder durch die Hebung der Küste gewonnen wird.
4. In den östlichen Scheeren, wo die Laubwiesen eine weite Verbreitung haben, wurden verschiedene Varianten gekennzeichnet, siehe hierüber näheres im Kap. II.

Die durch die Untersuchung von den Laubwiesen auf Skabbholmen gewonnenen Ergebnisse können in folgender Weise zusammengefaßt werden.

1. Die Temperatur ist an den sonnenoffenen Wiesen an heiteren Sommertagen am Mittag durchschnittlich um 1—1,5° höher als in den am meisten geschlossenen Beständen.

2. Die absolute Feuchtigkeit, sowie die relative variert an verschiedenen Standorten an demselben Tage bedeutend, durchschnittlich ist jedoch die absolute Feuchtigkeit im Rasen auf den sonnenoffenen Wiesen am höchsten, in den am stärksten beschatteten am niedrigsten. Die absolute Feuchtigkeit variert durchschnittlich beinahe gleichlaufend mit der Temperatur, daher kommt es, daß die relative Feuchtigkeit an verschiedenen Standorten durchschnittlich bloß um kleine Werte differiert. Viele Gründe sprechen dafür, daß dieses Ergebnis nicht vom maritimen Klima der Insel verursacht wird, sondern allgemeiner gültig ist.

4. Die Bäume der Laubwiesen wurden bezüglich ihres Lichtbedürfnisses untersucht. Siehe Kap. III.

7. Das Lichtbedürfnis wechselt mit den Nahrungsbedingungen, was unter anderem durch die ortotrope Sprosse des Haselstrauches illustriert werden kann.

8. Der Lichtgenüß der Pflanzen auf den sonnenoffenen Wiesen 1 ist oder beinahe 1, in den unbelaubten
Eschenbeständen beträgt er $\frac{1}{1,2} - \frac{1}{2,8}$ in den belaubten 14, in den unbelaubten Haselbeständen $\frac{1}{1,5} - \frac{1}{3}$, in den belaubten wechselt der Lichtgenüß an verschie-denen Punkten von $\frac{1}{27} - \frac{1}{30}$ und $\frac{1}{60} - \frac{1}{65}$. Die Pflan-zen der Wacholder- und Fichtenbestände haben stets nur einen herabgesetzten Lichtgenüß, in den ersteren beträgt er $\frac{1}{17} - \frac{1}{20}$, in den letzteren $\frac{1}{25} - \frac{1}{30}$, in jungen Beständen sinkt er bis $\frac{1}{50}$ ja auch noch tiefer.

19. Im Frühling assimilieren die Pflanzen in den unbelaubten Baum- und Strauchbeständen sehr lebhaft, ebenso auf den sonnenoffenen Wiesen. Die Entwick-lung des Laubes bedeutet für die allermeisten Pflan-zen durch geringeren Lichtgenüß eine bedeutende Herabsetzung der Assimilation, welche sich bei den meisten Arten in den stark geschlossenen Beständen so weit erstreckt, daß keine oder sehr wenig Stärke gebildet wird, obgleich dieselben Individuen im Früh-ling viel davon gebildet haben.

11. Mit dem herabgesetzten Nahrungskonsum der Schattenpflanzen folgt unter anderem eine bedeutende Verminderung der Atmungsintensität.

13. Die Schattenpflanzen transpirieren in den ge-schlossenen Haselbeständen weit weniger als die Son-nenpflanzen auf offenen Wiesen, die Unterschiede an heiteren Tagen und unter guten Transpirationsbedin-gungen erreichen höchst bedeutende Werte.

14. Wenn die Transpirationszahlen auf dieselbe Blattfläche berechnet werden, zeigt es sich, daß in der
Sonne die Pflanzen mit Palisadenzellen am meisten transpirieren, diejenigen aber, welche eine geringere Differenzierung des Blattoberflächen zeigen, weit geringer.

Literaturverzeichnis

(Hier sind auch einige Arbeiten angeführt, welche im Texte nicht zitiert sind, beim Ausarbeiten der Abhandlung jedoch angewandt worden sind.)

Brown, Horace T. Address to the chemical section of the British Association for the Advancement of Science. Dover 1899. (Ref. Bot. Zeitg. 1900. No. 5. pag. 70—74.)

Büssgen, M. Ban und Leben unserer Waldbäume. Jena 1887.

Crova. Description d’un hygromètre à condensation interieure. (Journal de Physique. Série II. 1883. pag. 466 und 450.)

Häck, F. Laubwaldflora Norddeutschlands. (Forschungen zur deutschen Landes- und Volkskunde. Stuttgart 1896.)

— (II). De nordiska trädés arkitektonik. (Nordisk Tidskrift. Stockholm 1900.)

Laurent, Em., et Marchal, Em. Recherches sur la synthèse des substances albuminoïdes par les végétaux. (Bull. de l'Ac. royale de Belgique. Brux. Janvier 1903.)

31*

Mayer, Ad. Über die Atmungssintesität der Schattenpflanzen. (Landwirtschaft. Versuchsst. Bd. 40. 1892. pag. 203—216.)

Müller, P. E. Studien über natürliche Huminsubstanzen und deren Einwirkung auf Vegetation und Boden. Berlin 1887.

Möller, A. Untersuchungen über ein- und zweijährige Kiefern im märkischen Sandboden. (Zeitschrift für Forst- und Jagdwesen. 1903. Heft 5 und 6.)

Nordvall, J. F. Om Sveriges skogar. (Föreningen Heimdals folkskristers Stockholms No. 75. 1902.)

Reinitzer, F. Über die Eignung der Huminsubstanzen zur Ernährung von Pflanzen. (Bot. Zeitung. 1900. pag. 59.)

— (VI). Ett Bidrag till kännedomen om Sveriges ekflora. (Bot. Not. 1886. pag. 146.)

Stange, B. Beziehungen zwischen Substratkonzentration, Turgor und Wachstum bei einigen Pflanzen. (Bot. Zeit. 1892.)

Törnebom, A. E. Om sandstensbäckenet i Gestrikland. (Geol. För. förh. Band III. 1876—1877. pag. 412—420.)

— (II). Om Skudbygning, Overvintring och Föryngelse. (Naturhist. Foren. Festskrift. 1884.)

— (VII). Beiträge zur Kenntnis des photochemischen Klimas im arktischen Gebiete. (Ebenda. Band LXVII. 1898.)

Voechting, H. Über die Abhängigkeit des Laubblattes von seiner Assimilationstätigkeit. (Bot. Zeitung. 1891.)

Hesselman, Zur Kenntnis d. Pflanzenlebens schwedischer Laubwiesen.

Tafelerklärung.

Verlag von Gustav Fischer in Jena.

Reproduktion von J. R. Obernetter, München
Verlag von Gustav Fischer in Jena.

Reproduktion von J. B. Oehlert, München.
Verlag von Gustav Fischer in Jena.

Reproduktion von J. B. Oetter, München